Service Manual

Inverter Pair
Ceiling Mounted Cassette Type
FFQ-Q Series

[Applied Models]
- Inverter Pair : Heat Pump
Inverter Pair
Ceiling Mounted
Cassette Type
FFQ-Q Series

Heat Pump

Indoor Unit
FFQ09Q2VJU
FFQ12Q2VJU
FFQ15Q2VJU
FFQ18Q2VJU

Outdoor Unit
RX09QMVJU
RX12QMVJU
RX15QMVJU
RX18QMVJU
1. Safety Cautions .. v
 1.1 Warnings and Cautions Regarding Safety of Workers .. v
 1.2 Warnings and Cautions Regarding Safety of Users .. vii
2. Icons Used .. x

Part 1 List of Functions .. 1
1. Functions ... 2

Part 2 Specifications ... 3
1. Specifications .. 4

Part 3 Printed Circuit Board Connector Wiring Diagram ... 6
1. Indoor Unit ... 7
 1.1 FFQ09/12/15/18Q2VJU .. 7
2. Wired Remote Controller ... 8
 2.1 BRC1E73 ... 8
3. Wireless Remote Controller Kit ... 9
 3.1 BRC082A41W, BRC082A42W(S) ... 9
4. Outdoor Unit ..10
 4.1 RX09/12QMVJU .. 10
 4.2 RX15/18QMVJU .. 11

Part 4 Functions and Control ... 12
1. Main Functions ...13
 1.1 Temperature Control .. 13
 1.2 Frequency Principle .. 13
 1.3 Airflow Direction Control ... 15
 1.4 Fan Speed Control for Indoor Unit ... 15
 1.5 Program Dry Operation ... 16
 1.6 Clock and Calendar Setting (With Wired Remote Controller BRC1E73) 17
 1.7 Schedule TIMER Operation (With Wired Remote Controller BRC1E73) ... 19
 1.8 Setback Function (With Wired Remote Controller BRC1E73) 23
 1.9 Drain Pump Control ... 23
 1.10 Hot Start Control (In Heating Operation Only) .. 25
 1.11 Presence and Floor Sensors (Option) ... 26
 1.12 Other Functions ... 29
2. Control Specification ... 30
 2.1 Mode Hierarchy ... 30
 2.2 Frequency Control ... 31
 2.3 Controls at Mode Changing/Start-up .. 33
 2.4 Discharge Pipe Temperature Control ... 35
2.5 Input Current Control ... 36
2.6 Freeze-up Protection Control ... 37
2.7 Heating Peak-cut Control .. 37
2.8 Outdoor Fan Control ... 38
2.9 Liquid Compression Protection Function 38
2.10 Defrost Control .. 39
2.11 Electronic Expansion Valve Control ... 40
2.12 Malfunctions .. 43

Part 5 Remote Controller .. 44

1. Wired Remote Controller (BRC1E73) ... 45
2. Wireless Remote Controller Kit (BRC082A41W, BRC082A42W(S)) 51

Part 6 Service Diagnosis .. 53

1. General Problem Symptoms and Check Items 55
2. Troubleshooting with LED ... 56
 2.1 Indoor Unit .. 56
 2.2 Outdoor Unit .. 56
3. Service Diagnosis ... 57
 3.1 Wired Remote Controller (BRC1E73) 57
 3.2 Wireless Remote Controller Kit (BRC082A41W, BRC082A42W(S)) 59
4. Troubleshooting .. 63
 4.1 Error Codes and Description .. 63
 4.2 Indoor Unit PCB Abnormality .. 64
 4.3 Drain Level Control System Abnormality 65
 4.4 Indoor Fan Motor (DC Motor) or Related Abnormality 66
 4.5 Humidifier or Related Abnormality .. 68
 4.6 Thermistor or Related Abnormality 69
 4.7 Presence Sensor or Floor Sensor Abnormality 70
 4.8 Remote Controller Thermistor Abnormality 71
 4.9 Signal Transmission Error (Between Indoor Unit and Remote Controller) 72
 4.10 Signal Transmission Error (Between MAIN Remote Controller and SUB Remote Controller) 73
 4.11 Low-voltage Detection or Over-voltage Detection 74
 4.12 Signal Transmission Error (Between Indoor Unit and Outdoor Unit) 76
 4.13 Mismatching of Indoor Unit and Outdoor Unit 78
 4.14 Outdoor Unit PCB Abnormality .. 79
 4.15 OL Activation (Compressor Overload) 80
 4.16 Compressor Lock ... 82
 4.17 DC Fan Lock (Outdoor Fan Motor) 83
 4.18 Input Overcurrent Detection .. 84
 4.19 Four Way Valve Abnormality .. 85
 4.20 Discharge Pipe Temperature Control 87
 4.21 High Pressure Control in Cooling .. 88
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.22 System Shutdown due to Compressor Internal Temperature Abnormality</td>
<td>90</td>
</tr>
<tr>
<td>4.23 Compressor System Sensor Abnormality</td>
<td>91</td>
</tr>
<tr>
<td>4.24 Position Sensor Abnormality</td>
<td>92</td>
</tr>
<tr>
<td>4.25 Thermistor or Related Abnormality (Outdoor Unit)</td>
<td>94</td>
</tr>
<tr>
<td>4.26 Electrical Box Temperature Rise</td>
<td>96</td>
</tr>
<tr>
<td>4.27 Radiation Fin Temperature Rise</td>
<td>97</td>
</tr>
<tr>
<td>4.28 Output Overcurrent Detection</td>
<td>98</td>
</tr>
<tr>
<td>5. Check</td>
<td>100</td>
</tr>
<tr>
<td>5.1 Thermistor Resistance Check</td>
<td>100</td>
</tr>
<tr>
<td>5.2 Indoor Fan Motor Connector Output Check</td>
<td>101</td>
</tr>
<tr>
<td>5.3 Power Supply Waveforms Check</td>
<td>101</td>
</tr>
<tr>
<td>5.4 Electronic Expansion Valve Check</td>
<td>102</td>
</tr>
<tr>
<td>5.5 Four Way Valve Performance Check</td>
<td>103</td>
</tr>
<tr>
<td>5.6 Inverter Unit Refrigerant System Check</td>
<td>103</td>
</tr>
<tr>
<td>5.7 Inverter Analyzer Check</td>
<td>104</td>
</tr>
<tr>
<td>5.8 Rotation Pulse Check on the Outdoor Unit PCB</td>
<td>106</td>
</tr>
<tr>
<td>5.9 Installation Condition Check</td>
<td>107</td>
</tr>
<tr>
<td>5.10 Discharge Pressure Check</td>
<td>107</td>
</tr>
<tr>
<td>5.11 Outdoor Fan System Check</td>
<td>108</td>
</tr>
<tr>
<td>5.12 Main Circuit Short Check</td>
<td>108</td>
</tr>
<tr>
<td>5.13 Power Module Check</td>
<td>110</td>
</tr>
</tbody>
</table>

Part 7 Trial Operation and Field Settings .. 112

1. Pump Down Operation ... 113
2. Forced Cooling Operation ... 114
3. Trial Operation .. 115
4. Field Settings ... 118
 4.1 How to Change the Field Settings ... 118
 4.2 Overview of the Field Settings ... 121
 4.3 MAIN/SUB Setting when Using 2 Wired Remote Controllers 122
 4.4 Address and MAIN/SUB Setting for Wireless Remote Controller 123
 4.5 Facility Setting (cooling at low outdoor temperature) 125
5. Silicone Grease on Power Transistor/Diode Bridge 126

Part 8 Appendix .. 127

1. Piping Diagrams ... 128
 1.1 Indoor Unit .. 128
 1.2 Outdoor Unit ... 129
2. Wiring Diagrams .. 130
 2.1 Indoor Unit .. 130
 2.2 Outdoor Unit ... 131
3. Operation Limit ... 133
1. Safety Cautions

Be sure to read the following safety cautions before conducting repair work. After the repair work is complete, be sure to conduct a test operation to ensure that the equipment operates normally, and explain the cautions for operating the product to the customer.

Caution Items
The caution items are classified into⚠️ Warning and⚠️ Caution. The⚠️ Warning items are especially important since death or serious injury can result if they are not followed closely. The⚠️ Caution items can also lead to serious accidents under some conditions if they are not followed. Therefore, be sure to observe all the safety caution items described below.

Pictograms
⚠️ This symbol indicates an item for which caution must be exercised. The pictogram shows the item to which attention must be paid.
〇 This symbol indicates a prohibited action. The prohibited item or action is shown in the illustration or near the symbol.
▼ This symbol indicates an action that must be taken, or an instruction. The instruction is shown in the illustration or near the symbol.

1.1 Warnings and Cautions Regarding Safety of Workers

| ⚠️ Warning |
|-------------------|-------------------|
| Do not store equipment in a room with fire sources (e.g., naked flames, gas appliances, electric heaters). |
| Be sure to disconnect the power cable from the socket before disassembling equipment for repair. Working on equipment that is connected to the power supply may cause an electrical shock. If it is necessary to supply power to the equipment to conduct the repair or inspect the circuits, do not touch any electrically charged sections of the equipment. |
| If refrigerant gas is discharged during repair work, do not touch the discharged refrigerant gas. Refrigerant gas may cause frostbite. |
| When disconnecting the suction or discharge pipe of the compressor at the welded section, evacuate the refrigerant gas completely at a well-ventilated place first. If there is gas remaining inside the compressor, the refrigerant gas or refrigerating machine oil discharges when the pipe is disconnected, and it may cause injury. |
| If refrigerant gas leaks during repair work, ventilate the area. Refrigerant gas may generate toxic gases when it contacts flames. |
| Be sure to discharge the capacitor completely before conducting repair work. The step-up capacitor supplies high-voltage electricity to the electrical components of the outdoor unit. A charged capacitor may cause an electrical shock. |
Warning

Do not turn the air conditioner on or off by plugging in or unplugging the power cable.
Plugging in or unplugging the power cable to operate the equipment may cause an electrical shock or fire.

Be sure to wear a safety helmet, gloves, and a safety belt when working in a high place (more than 2 m (6.5 ft)).
Insufficient safety measures may cause a fall.

In case of R-32 / R-410A refrigerant models, be sure to use pipes, flare nuts and tools intended for the exclusive use with the R-32 / R-410A refrigerant.
The use of materials for R-22 refrigerant models may cause a serious accident, such as a damage of refrigerant cycle or equipment failure.

Do not mix air or gas other than the specified refrigerant (R-32 / R-410A / R-22) in the refrigerant system.
If air enters the refrigerant system, an excessively high pressure results, causing equipment damage and injury.

Caution

Do not repair electrical components with wet hands.
Working on the equipment with wet hands may cause an electrical shock.

Do not clean the air conditioner with water.
Washing the unit with water may cause an electrical shock.

Be sure to provide an earth / grounding when repairing the equipment in a humid or wet place, to avoid electrical shocks.

Be sure to turn off the power switch and unplug the power cable when cleaning the equipment.
The internal fan rotates at a high speed, and may cause injury.

Be sure to conduct repair work with appropriate tools.
The use of inappropriate tools may cause injury.
1.2 Warnings and Cautions Regarding Safety of Users

<table>
<thead>
<tr>
<th>Caution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Be sure to check that the refrigerating cycle section has cooled down enough before conducting repair work. Working on the unit when the refrigerating cycle section is hot may cause burns.</td>
</tr>
<tr>
<td>Conduct welding work in a well-ventilated place. Using a welder in an enclosed room may cause oxygen deficiency.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Warning</th>
</tr>
</thead>
<tbody>
<tr>
<td>Do not store the equipment in a room with fire sources (e.g., naked flames, gas appliances, electric heaters).</td>
</tr>
<tr>
<td>Be sure to use parts listed in the service parts list of the applicable model and appropriate tools to conduct repair work. Never attempt to modify the equipment. The use of inappropriate parts or tools may cause an electrical shock, excessive heat generation or fire.</td>
</tr>
<tr>
<td>If the power cable and lead wires are scratched or have deteriorated, be sure to replace them. Damaged cable and wires may cause an electrical shock, excessive heat generation or fire.</td>
</tr>
<tr>
<td>Do not use a joined power cable or extension cable, or share the same power outlet with other electrical appliances, since it may cause an electrical shock, excessive heat generation or fire.</td>
</tr>
<tr>
<td>Be sure to use an exclusive power circuit for the equipment, and follow the local technical standards related to the electrical equipment, the internal wiring regulations, and the instruction manual for installation when conducting electrical work. Insufficient power circuit capacity and improper electrical work may cause an electrical shock or fire.</td>
</tr>
<tr>
<td>Be sure to use the specified cable for wiring between the indoor and outdoor units. Make the connections securely and route the cable properly so that there is no force pulling the cable at the connection terminals. Improper connections may cause excessive heat generation or fire.</td>
</tr>
<tr>
<td>Warning</td>
</tr>
<tr>
<td>---------</td>
</tr>
<tr>
<td>When wiring between the indoor and outdoor units, make sure that the terminal cover does not lift off or dismount because of the cable.
If the cover is not mounted properly, the terminal connection section may cause an electrical shock, excessive heat generation or fire.</td>
</tr>
</tbody>
</table>

| Do not damage or modify the power cable.
Damaged or modified power cables may cause an electrical shock or fire. Placing heavy items on the power cable, or heating or pulling the power cable may damage it. |

| Do not mix air or gas other than the specified refrigerant (R-32 / R-410A / R-22) in the refrigerant system.
If air enters the refrigerant system, an excessively high pressure results, causing equipment damage and injury. |

| If the refrigerant gas leaks, be sure to locate the leaking point and repair it before charging the refrigerant. After charging the refrigerant, make sure that there is no leak.
If the leaking point cannot be located and the repair work must be stopped, be sure to pump-down, and close the service valve, to prevent refrigerant gas from leaking into the room. Refrigerant gas itself is harmless, but it may generate toxic gases when it contacts flames, such as those from fan type and other heaters, stoves and ranges. |

| When relocating the equipment, make sure that the new installation site has sufficient strength to withstand the weight of the equipment.
lIf the installation site does not have sufficient strength or the installation work is not conducted securely, the equipment may fall and cause injury. |

| Check to make sure that the power cable plug is not dirty or loose, then insert the plug into a power outlet securely.
If the plug is dusty or has a loose connection, it may cause an electrical shock or fire. |

<p>| When replacing the coin battery in the remote controller, be sure to dispose of the old battery to prevent children from swallowing it.
If a child swallows the coin battery, see a doctor immediately. |</p>
<table>
<thead>
<tr>
<th>Caution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Installation of a leakage breaker is necessary in some cases depending on the conditions of the installation site, to prevent electrical shocks.</td>
</tr>
<tr>
<td>Do not install the equipment in a place where there is a possibility of combustible gas leaks.</td>
</tr>
<tr>
<td>If combustible gas leaks and remains around the unit, it may cause a fire.</td>
</tr>
<tr>
<td>Check to see if parts and wires are mounted and connected properly, and if connections at the soldered or crimped terminals are secure.</td>
</tr>
<tr>
<td>Improper installation and connections may cause excessive heat generation, fire or an electrical shock.</td>
</tr>
<tr>
<td>If the installation platform or frame has corroded, replace it.</td>
</tr>
<tr>
<td>A corroded installation platform or frame may cause the unit to fall, resulting in injury.</td>
</tr>
<tr>
<td>Check the earth / grounding, and repair it if the equipment is not properly earthed / grounded.</td>
</tr>
<tr>
<td>Improper earth / grounding may cause an electrical shock.</td>
</tr>
<tr>
<td>Be sure to measure insulation resistance after the repair, and make sure that the resistance is 1 MΩ or higher.</td>
</tr>
<tr>
<td>Faulty insulation may cause an electrical shock.</td>
</tr>
<tr>
<td>Be sure to check the drainage of the indoor unit after the repair.</td>
</tr>
<tr>
<td>Faulty drainage may cause water to enter the room and wet the furniture and floor.</td>
</tr>
<tr>
<td>Do not tilt the unit when removing it.</td>
</tr>
<tr>
<td>The water inside the unit may spill and wet the furniture and floor.</td>
</tr>
</tbody>
</table>
2. Icons Used

The following icons are used to attract the attention of the reader to specific information.

<table>
<thead>
<tr>
<th>Icon</th>
<th>Type of Information</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>![Warning Icon]</td>
<td>Warning</td>
<td>A Warning is used when there is danger of personal injury.</td>
</tr>
<tr>
<td>![Caution Icon]</td>
<td>Caution</td>
<td>A Caution is used when there is danger that the reader, through incorrect manipulation, may damage equipment, lose data, get an unexpected result or have to restart (part of) a procedure.</td>
</tr>
<tr>
<td>![Note Icon]</td>
<td>Note</td>
<td>A Note provides information that is not indispensable, but may nevertheless be valuable to the reader, such as tips and tricks.</td>
</tr>
<tr>
<td>![Reference Icon]</td>
<td>Reference</td>
<td>A Reference guides the reader to other places in this binder or in this manual, where he/she will find additional information on a specific topic.</td>
</tr>
</tbody>
</table>
Part 1
List of Functions

1. Functions...2
1. Functions

<table>
<thead>
<tr>
<th>Category</th>
<th>Functions</th>
<th>Category</th>
<th>Functions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic Functions</td>
<td>Inverter (with inverter power control)</td>
<td>Health & Cleanliness</td>
<td>Auto cleaning filter</td>
</tr>
<tr>
<td></td>
<td>Operation limit for cooling</td>
<td></td>
<td>Air-purifying filter</td>
</tr>
<tr>
<td></td>
<td>Operation limit for heating</td>
<td></td>
<td>Titanium apatite deodorizing filter (option)</td>
</tr>
<tr>
<td></td>
<td>PAM control</td>
<td></td>
<td>Longlife filter</td>
</tr>
<tr>
<td></td>
<td>Standby electricity saving</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Compressor</td>
<td>Oval scroll compressor</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Swing compressor</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rotary compressor</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Reluctance DC motor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Comfortable Airflow</td>
<td>Power-airflow flap (horizontal blade)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Power-airflow dual flaps (horizontal blade)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Power-airflow diffuser</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Wide-angle louvers (vertical blades)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Auto-swing (up and down)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Auto-swing (right and left)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Individual flap control</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3-D airflow</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>COMFORT AIRFLOW operation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Comfort Control</td>
<td>Auto fan speed</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Indoor unit quiet operation</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>NIGHT QUIET mode (automatic)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>OUTDOOR UNIT QUIET operation (manual)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Presence and floor sensor (option)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hot-start function</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Draft prevention with sensor</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Automatic defrosting</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operation</td>
<td>Automatic operation</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Program dry function</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fan only</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Setback function</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lifestyle Convenience</td>
<td>POWERFUL operation (non-inverter)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>POWERFUL operation (inverter)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Priority-room setting</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>COOL/HEAT mode lock</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>HOME LEAVE operation</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ECONO operation</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>indoor unit ON/OFF button</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Signal receiving sign</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>R/C with back light</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note:
- •: Available
- —: Not available
- ★1: With wired remote controller
- ★2: With wireless remote controller
- ★3: With air direction adjustment grille (option)
- ★4: Receiving sound only

2 List of Functions
Part 2
Specifications

1. Specifications.. 4
1. Specifications

60 Hz, 208 - 230V

<table>
<thead>
<tr>
<th>Capacity</th>
<th>Indoor Unit (Min. - Max.)</th>
<th>8640 (4,600 - 11,000)</th>
<th>9000 (4,600 - 14,000)</th>
<th>10,000 (4,600 - 13,300)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Running Current (Rated)</td>
<td>A</td>
<td>3.64 - 3.29</td>
<td>3.43 - 3.10</td>
<td>4.61 - 4.17</td>
</tr>
<tr>
<td>Power Consumption</td>
<td>W</td>
<td>700 (280 – 1,050)</td>
<td>641 (250 – 1,150)</td>
<td>864 (280 – 1,410)</td>
</tr>
<tr>
<td>Power Factor (Rated)</td>
<td>%</td>
<td>92.5 - 92.5</td>
<td>89.8 - 89.9</td>
<td>90.1 - 90.1</td>
</tr>
<tr>
<td>SEER / HSPF</td>
<td></td>
<td>20.90</td>
<td>11.70</td>
<td>20.20</td>
</tr>
<tr>
<td>COP (Rated)</td>
<td></td>
<td>—</td>
<td>4.58</td>
<td>—</td>
</tr>
<tr>
<td>EER (Rated)</td>
<td></td>
<td>13.00</td>
<td>4.61</td>
<td></td>
</tr>
<tr>
<td>Piping Connections</td>
<td>Liquid</td>
<td>φ 1/4 (φ 6.4)</td>
<td>φ 1/4 (φ 6.4)</td>
<td></td>
</tr>
<tr>
<td>Gas</td>
<td>φ 3/8 (φ 9.5)</td>
<td>φ 3/8 (φ 9.5)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drain</td>
<td>VP20 (O.D. φ 1-1/32 (φ 26))</td>
<td>VP20 (O.D. φ 1-1/32 (φ 26))</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heat Insulation</td>
<td>Both</td>
<td>Both</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max. Interunit Piping Length</td>
<td>ft (m)</td>
<td>65-5/8 (20)</td>
<td>65-5/8 (20)</td>
<td></td>
</tr>
<tr>
<td>Max. Interunit Height Difference</td>
<td>ft (m)</td>
<td>49-1/4 (15)</td>
<td>49-1/4 (15)</td>
<td></td>
</tr>
<tr>
<td>Chargeless</td>
<td>ft (m)</td>
<td>32-13/16 (10)</td>
<td>32-13/16 (10)</td>
<td></td>
</tr>
<tr>
<td>Amount of Additional Charge of Refrigerant</td>
<td>oz/ft (g/m)</td>
<td>0.21 (20)</td>
<td>0.21 (20)</td>
<td></td>
</tr>
</tbody>
</table>

Indoor Unit

<table>
<thead>
<tr>
<th>Model</th>
<th>BYFQ0603W1</th>
<th>BYFQ0603W1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Color</td>
<td>White</td>
<td>White</td>
</tr>
<tr>
<td>Dimensions (H × W × D)</td>
<td>2-3/16 × 27-9/16 × 27-9/16 (55 × 700 × 700)</td>
<td>2-3/16 × 27-9/16 × 27-9/16 (55 × 700 × 700)</td>
</tr>
<tr>
<td>Weight (Mass)</td>
<td>Lbs (kg)</td>
<td>6 (2.7)</td>
</tr>
</tbody>
</table>

Outdoor Unit

<table>
<thead>
<tr>
<th>Model</th>
<th>1YC23AUXD</th>
<th>1YC23AUXD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Motor Output</td>
<td>W</td>
<td>790</td>
</tr>
<tr>
<td>Refrigerant Oil Type</td>
<td>oz (L)</td>
<td>FVC50K</td>
</tr>
<tr>
<td>Refrigerant Type</td>
<td>R-410A</td>
<td>R-410A</td>
</tr>
<tr>
<td>Airflow Rate</td>
<td>H</td>
<td>378 (10.7)</td>
</tr>
<tr>
<td>L</td>
<td>295 (7.6)</td>
<td>295 (7.6)</td>
</tr>
</tbody>
</table>

Drawing No.

<table>
<thead>
<tr>
<th>Indoor Unit</th>
<th>3D106061A</th>
<th>3D106061A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outdoor Unit</td>
<td>3D106062</td>
<td>3D106062</td>
</tr>
</tbody>
</table>

Conversion Formulae

- kcal/h = kW × 3600
- Btu/h = kW × 1055
- cfm = m³/min × 35.3

Note:

The data are based on the conditions shown in the table below:

<table>
<thead>
<tr>
<th>Condition</th>
<th>Indoor</th>
<th>Outdoor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indoor</td>
<td>80.0°FDB (26.7°CDB) / 67.0°FWB (19.4°CWB)</td>
<td>70.0°FDB (21.1°CDB) / 60.0°FWB (15.6°CWB)</td>
</tr>
<tr>
<td>Outdoor</td>
<td>95.0°FDB (35.0°CDB) / 75°FWB (23.9°CWB)</td>
<td>47°FDB (8.3°CDB) / 43°FWB (6.1°CWB)</td>
</tr>
</tbody>
</table>

Specifications

- Indoor Unit: 80.0°FDB (26.7°CDB) / 67.0°FWB (19.4°CWB)
- Outdoor Unit: 70.0°FDB (21.1°CDB) / 60.0°FWB (15.6°CWB)

Piping Length

- 25 ft (7.5 m)
Specifications

Model

<table>
<thead>
<tr>
<th>Indoor Unit</th>
<th>FFQ15Q2VJU</th>
<th>FFQ18Q2VJU</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capacity</td>
<td>Btu/h</td>
<td>Btu/h</td>
</tr>
<tr>
<td>Rated (Min. – Max.)</td>
<td>14,400 (5,100 – 16,200)</td>
<td>16,200 (5,200 – 16,300)</td>
</tr>
<tr>
<td>Running Current (Rated)</td>
<td>A</td>
<td>5.83 - 5.27</td>
</tr>
<tr>
<td>Power Consumption Rated (Min. – Max.)</td>
<td>W</td>
<td>1,152 (310 – 1,640)</td>
</tr>
<tr>
<td>Power Factor (Rated) %</td>
<td>95.0 - 95.0</td>
<td></td>
</tr>
<tr>
<td>COP (Rated)</td>
<td>WW</td>
<td></td>
</tr>
<tr>
<td>EER (Rated)</td>
<td>Btu/W·h</td>
<td></td>
</tr>
<tr>
<td>SEER / HSPF</td>
<td>20.70</td>
<td></td>
</tr>
<tr>
<td>Cooling Capacity Rated (Min. ~ Max.) Btu/h</td>
<td>14,400 (5,100 – 16,200)</td>
<td></td>
</tr>
<tr>
<td>Heating Capacity Rated (Min. ~ Max.) Btu/h</td>
<td>16,200 (5,200 – 16,300)</td>
<td></td>
</tr>
<tr>
<td>Cooling Running Current (Rated) A</td>
<td>5.83 - 5.27</td>
<td></td>
</tr>
<tr>
<td>Heating Running Current (Rated) A</td>
<td>5.83 - 5.27</td>
<td></td>
</tr>
<tr>
<td>Cooling Power Consumption Rated (Min. – Max.) W</td>
<td>1,152 (310 – 1,640)</td>
<td></td>
</tr>
<tr>
<td>Heating Power Consumption Rated (Min. – Max.) W</td>
<td>1,152 (310 – 1,640)</td>
<td></td>
</tr>
</tbody>
</table>

Model

<table>
<thead>
<tr>
<th>Outdoor Unit</th>
<th>RX15QMVJU</th>
<th>RX18QMVJU</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>Hermetically Sealed Swing Type</td>
<td>Hermetically Sealed Swing Type</td>
</tr>
<tr>
<td>Model</td>
<td>2YCS6PD</td>
<td>2YCS6PD</td>
</tr>
<tr>
<td>Motor Output</td>
<td>W</td>
<td>1,100</td>
</tr>
<tr>
<td>Refrigerant Oil Type</td>
<td>FVC50K</td>
<td>FVC50K</td>
</tr>
<tr>
<td>Charging oz (L)</td>
<td>22.0 (0.65)</td>
<td>22.0 (0.65)</td>
</tr>
<tr>
<td>Refrigerant Type</td>
<td>R-410A</td>
<td>R-410A</td>
</tr>
<tr>
<td>Packaged Dimensions (H x W x D)</td>
<td>in. (mm)</td>
<td>31-7/8 × 41-9/16 × 18-1/4 (810 × 1,056 × 464)</td>
</tr>
<tr>
<td>Weight Lbs (kg)</td>
<td>36 (16)</td>
<td>36 (16)</td>
</tr>
<tr>
<td>Gross Weight Lbs (kg)</td>
<td>40 (18)</td>
<td>40 (18)</td>
</tr>
<tr>
<td>Sound Pressure Level</td>
<td>H / M / L dB(A)</td>
<td>40 / 37 / 31</td>
</tr>
<tr>
<td>Casing Color</td>
<td>Ivory White</td>
<td>Ivory White</td>
</tr>
<tr>
<td>Airflow Rate</td>
<td>H cfm (m³/min)</td>
<td>2,314 (65.53)</td>
</tr>
<tr>
<td>Fan Type</td>
<td>Propeller</td>
<td>Propeller</td>
</tr>
<tr>
<td>Running Current (Rated)</td>
<td>A</td>
<td>5.54 - 5.01</td>
</tr>
<tr>
<td>Power Consumption (Rated)</td>
<td>W</td>
<td>1,124</td>
</tr>
<tr>
<td>Power Factor (Rated) %</td>
<td>97.5 - 97.5</td>
<td></td>
</tr>
<tr>
<td>Starting Current A</td>
<td>8.0</td>
<td></td>
</tr>
<tr>
<td>Dimensions (H x W x D)</td>
<td>in. (mm)</td>
<td>28-15/16 × 34-1/4 × 12-5/8 (735 × 870 × 320)</td>
</tr>
<tr>
<td>Gross Weight</td>
<td>Lbs (kg)</td>
<td>115 (52)</td>
</tr>
<tr>
<td>Sound Pressure Level</td>
<td>H dB(A)</td>
<td>50</td>
</tr>
</tbody>
</table>

Conversion Formulae

- kcal/h = kW × 860
- Btu/h = kW × 3412
- cfm = m³/min × 35.3

Notes:

- The data are based on the conditions shown in the table below:
- **Cooling** Indoor: 80.0°FDB (26.7°CDB) / 67.0°FWB (19.4°CWB)
 Outdoor: 95.0°FDB (35°CDB) / 75°FWB (23.9°CWB)
- **Heating** Indoor: 70.0°FDB (21.1°CDB) / 60.0°FWB (15.6°CWB)
 Outdoor: 47°FDB (8.3°CDB) / 43°FWB (6.1°CWB)
Part 3
Printed Circuit Board Connector Wiring Diagram

1. Indoor Unit...7
 1.1 FFQ09/12/15/18Q2VJU.. 7
2. Wired Remote Controller...8
 2.1 BRC1E73 ... 8
3. Wireless Remote Controller Kit ...9
 3.1 BRC082A41W, BRC082A42W(S).. 9
4. Outdoor Unit..10
 4.1 RX09/12QMVJU... 10
 4.2 RX15/18QMVJU... 11
1. Indoor Unit

1.1 FFQ09/12/15/18Q2VJU

Control PCB (A1P)

1) X15A Connector for float switch
2) X16A Connector for room temperature thermistor (suction air thermistor)
3) X17A, X18A Connector for indoor heat exchanger thermistor
4) X20A Connector for DC fan motor
5) X24A Connector for transmitter board
 (when the wireless remote controller (option) is used)
6) X25A Connector for drain pump motor
7) X27A Connector for terminal block (for inter-unit wiring)
8) X30A Connector for terminal block (for wired remote controller)
9) X33A Connector for adaptor for wiring (option)
10) X35A Connector for wiring adaptor for electrical appendices (option)
11) X36A Connector for swing motors on decoration panel (option)
12) X80A Connector for decoration panel (BYFQ60B3W1) (option)
13) X81A Connector for sensor kit (BRYQ60A2W(S)) (option)
14) HAP LED for service monitor (green)
15) DS1 DIP switch
16) F1U Fuse (5 A, 250 V)
2. Wired Remote Controller

2.1 BRC1E73

Wired Remote Controller PCB

1) P1, P2 Terminal for indoor unit
2) R4T Room temperature thermistor
3. Wireless Remote Controller Kit

3.1 BRC082A41W, BRC082A42W(S)

Transmitter Board (A2P)

1) X1A Connector for receiver (A3P)
2) X2A Connector for control PCB (A1P)
3) SS1 MAIN/SUB setting switch
 * Refer to page 123 for details.
4) SS2 Address setting switch
 * Refer to page 123 for details.

Receiver (A3P)

1) X1A Connector for transmitter board (A2P)
2) BS1 Emergency operation switch
3) LED1 (H1P) LED for operation (red)
4) LED2 (H2P) LED for timer (green)
5) LED3 (H3P) LED for filter cleaning sign (red)
6) LED4 (H4P) LED for defrost operation (orange)

* LED5 and LED6 do not function.
4. Outdoor Unit

4.1 RX09/12QMVJU

Main PCB (PCB1)

<table>
<thead>
<tr>
<th>No.</th>
<th>Connector/Component Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1)</td>
<td>S20 Connector for electronic expansion valve coil</td>
</tr>
<tr>
<td>2)</td>
<td>S30 Connector for compressor</td>
</tr>
<tr>
<td>3)</td>
<td>S40 Connector for overload protector</td>
</tr>
<tr>
<td>4)</td>
<td>S71 Connector for DC fan motor</td>
</tr>
<tr>
<td>5)</td>
<td>S80 Connector for four way valve coil</td>
</tr>
<tr>
<td>6)</td>
<td>S90 Connector for thermistors (outdoor temperature, outdoor heat exchanger, discharge pipe)</td>
</tr>
<tr>
<td>7)</td>
<td>HL1, HN1, S Connector for terminal block</td>
</tr>
<tr>
<td>8)</td>
<td>E1, E2 Terminal for ground wire</td>
</tr>
<tr>
<td>9)</td>
<td>HR1, HR2 Connector for reactor</td>
</tr>
<tr>
<td>10)</td>
<td>FU1, FU2 Fuse (3.15 A, 250 V)</td>
</tr>
<tr>
<td>11)</td>
<td>FU3 Fuse (20 A, 250 V)</td>
</tr>
<tr>
<td>12)</td>
<td>J6 Jumper for facility setting</td>
</tr>
<tr>
<td>13)</td>
<td>LED A LED for service monitor (green)</td>
</tr>
<tr>
<td></td>
<td>V2, V3, V150 Varistor</td>
</tr>
</tbody>
</table>

⚠️ **Caution**: Replace the PCB if you accidentally cut a wrong jumper. Jumper is necessary for electronic circuit. Improper operation may occur if you cut any of them.
4.2 RX15/18QMVJU

Main PCB

1) S20 Connector for electronic expansion valve coil
2) S40 Connector for overload protector
3) S70 Connector for DC fan motor
4) S80 Connector for four way valve coil
5) S90 Connector for thermistors (outdoor temperature, outdoor heat exchanger, discharge pipe)
6) HL1, HN1, S Connector for terminal block
7) E1, E2 Terminal for ground
8) U, V, W Connector for compressor
9) FU1, FU2 Fuse (3.15 A, 250 V)
10) FU3 Fuse (30 A, 250 V)
11) J6 Jumper for facility setting
 * Refer to page 125 for details.
12) LED A LED for service monitor (green)
13) V1, V2, V3 Varistor

Caution Replace the PCB if you accidentally cut a wrong jumper.
Jumpers are necessary for electronic circuit. Improper operation may occur if you cut any of them.
Part 4
Functions and Control

1. Main Functions

1.1 Temperature Control

1.2 Frequency Principle

1.3 Airflow Direction Control

1.4 Fan Speed Control for Indoor Unit

1.5 Program Dry Operation

1.6 Clock and Calendar Setting
 (With Wired Remote Controller BRC1E73)

1.7 Schedule TIMER Operation
 (With Wired Remote Controller BRC1E73)

1.8 Setback Function
 (With Wired Remote Controller BRC1E73)

1.9 Drain Pump Control

1.10 Hot Start Control (In Heating Operation Only)

1.11 Presence and Floor Sensors (Option)

1.12 Other Functions

2. Control Specification

2.1 Mode Hierarchy

2.2 Frequency Control

2.3 Controls at Mode Changing/Start-up

2.4 Discharge Pipe Temperature Control

2.5 Input Current Control

2.6 Freeze-up Protection Control

2.7 Heating Peak-cut Control

2.8 Outdoor Fan Control

2.9 Liquid Compression Protection Function

2.10 Defrost Control

2.11 Electronic Expansion Valve Control

2.12 Malfunctions
1. Main Functions

1.1 Temperature Control

Definitions of Temperatures

The definitions of temperatures are classified as following.

- Room temperature: temperature of lower part of the room
- Set temperature: temperature set by remote controller
- Room thermistor temperature: temperature detected by room temperature thermistor
- Target temperature: temperature determined by microcomputer

Temperature Control

The temperature of the room is detected by the room temperature thermistor. However, there is a difference between the temperature detected by room temperature thermistor and the temperature of lower part of the room, depending on the installation condition. Practically, the temperature control is done by the target temperature appropriately adjusted for the indoor unit and the temperature detected by room temperature thermistor.

1.2 Frequency Principle

Control Parameters

The frequency of the compressor is controlled by the following 2 parameters:

- The load condition of the operating indoor unit
- The difference between the room thermistor temperature and the target temperature

The target frequency is adapted by additional parameters in the following cases:

- Frequency restrictions
- Initial settings
- Forced cooling operation

Inverter Principle

To regulate the capacity, a frequency control is needed. The inverter makes it possible to control the rotation speed of the compressor. The following table explains the inverter principle:

<table>
<thead>
<tr>
<th>Phase</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>The supplied AC power source is converted into the DC power source for the present.</td>
</tr>
</tbody>
</table>
| 2 | The DC power source is reconverted into the three phase AC power source with variable frequency.
 - When the frequency increases, the rotation speed of the compressor increases resulting in an increase of refrigerant circulation. This leads to a larger amount of heat exchange per unit.
 - When the frequency decreases, the rotation speed of the compressor decreases resulting in a decrease of refrigerant circulation. This leads to a smaller amount of heat exchange per unit. |
The following drawing shows a schematic view of the inverter principle:

Inverter Features
The inverter provides the following features:

- The regulating capacity can be changed according to the changes in the outdoor temperature and cooling/heating load.
- Quick heating and quick cooling
 The rotation speed of the compressor is increased when starting the heating (or cooling). This enables to reach the set temperature quickly.
- Even during extreme cold weather, high capacity is achieved. It is maintained even when the outdoor temperature is 2°C (35.6 °F).
- Comfortable air conditioning
 A fine adjustment is integrated to keep the room temperature constant.
- Energy saving heating and cooling
 Once the set temperature is reached, the energy saving operation enables to maintain the room temperature at low power.

Frequency Limits
The following functions regulate the minimum and maximum frequency:

<table>
<thead>
<tr>
<th>Frequency</th>
<th>Functions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low</td>
<td>Four way valve operation compensation. Refer to page 34.</td>
</tr>
</tbody>
</table>
| High | Compressor protection function. Refer to page 34.
| | Discharge pipe temperature control. Refer to page 35.
| | Input current control. Refer to page 36.
| | Freeze-up protection control. Refer to page 37.
| | Heating peak-cut control. Refer to page 37.
| | Defrost control. Refer to page 39. |

Forced Cooling Operation
Refer to page 114 for details.
1.3 Airflow Direction Control

Outline

There are two types of airflow direction settings.

- **Automatic swing setting**
 The flaps automatically oscillate up and down.

 ![Diagram of Automatic Swing](R24069)

- **Airflow direction fixed setting**
 You can select from one of the fixed directions.
 The display of the remote controller and the actual angle of the flap do not match.

 ![Diagram of Desired Position](R24070)

Flaps Movement

Under the operating conditions shown below, airflow direction is controlled automatically. Actual operation may be different from what is displayed on the remote controller.

- Room temperature is higher than the remote controller’s set temperature in heating operation.
- When defrosting in heating operation. The airflow discharges horizontally to avoid blowing cold air directly on the room occupants.
- Under continuous operation with the airflow discharging horizontally.

Individual Flap Control

With decoration panels BYFQ60C2W1W(S) and wired remote controller (BRC1E73), you can control each one of the four flaps individually. The following marks are beside each air outlet:

- ![Mark](
- ![Mark](
- ![Mark](
- ![Mark]"

1.4 Fan Speed Control for Indoor Unit

- **With Wired Remote Controller (BRC1E73)**
 To change the fan speed, press **Fan Speed** button and select the fan speed from Low/Medium/High/Auto for three-speed.
 - The system may change the fan speed automatically for equipment protection purposes.
 - The system may turn off the fan when the room temperature is satisfied.
 - It is normal for a delay to occur when changing the fan speed.
 - If the Auto is selected for the fan speed, the fan speed varies automatically based on the difference between set temperature and room temperature.

- **With Wireless Remote Controller Kit (BRC082A41W, BRC082A42W(S))**
 Press **FAN** button to select the fan speed, LOW, MEDIUM or HIGH.
1.5 Program Dry Operation

Outline
Program dry operation removes humidity while preventing the room temperature from lowering. Since the microcomputer controls both the temperature and airflow rate, the temperature adjustment and FAN setting buttons are inoperable.

Details
The microcomputer automatically sets the temperature and airflow rate. The difference between the room thermistor temperature at start-up and the target temperature is divided into two zones. Then, the unit operates in an appropriate capacity for each zone to maintain the temperature and humidity at a comfortable level.

<table>
<thead>
<tr>
<th>Room thermistor temperature at start-up</th>
<th>Target temperature X</th>
<th>Thermostat OFF point Y</th>
<th>Thermostat ON point Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>24.5°C or more (76.1°F or more)</td>
<td>Room thermistor</td>
<td>X - 2.5°C (X - 4.5°F)</td>
<td>X - 1.0°C (X - 1.8°F)</td>
</tr>
<tr>
<td>16.5 ~ 24°C (61.7 ~ 75.2°F)</td>
<td>temperature at start-up</td>
<td>X - 2.0°C (X - 3.6°F)</td>
<td>X - 1.0°C (X - 1.8°F)</td>
</tr>
<tr>
<td>16°C or less (60.8°F or less)</td>
<td>16°C (60.8°F)</td>
<td>X - 2.0°C (X - 3.6°F)</td>
<td>X - 1.0°C = 15°C (X - 1.8°F = 59°F)</td>
</tr>
</tbody>
</table>

(R24367)
1.6 Clock and Calendar Setting (With Wired Remote Controller BRC1E73)

1. Press Menu/OK button to display the main menu screen.
2. Press ▼▲ buttons to select Clock & Calendar on the main menu screen.
 Press Menu/OK button to display the clock & calendar screen.

2. Press ▼▲ buttons to select Date & Time on the clock & calendar screen.
 Press Menu/OK button to display the date & time screen.

3. Select Year with ◀► buttons.
 Change the year with ▼▲ buttons.
 Holding down the button causes the number to change continuously.

4. Select Month with ◀► buttons.
 Change the month with ▼▲ buttons.
 Holding down the button causes the number to change continuously.

5. Select Day with ◀► buttons.
 Change the day with ▼▲ buttons.
 Holding down the button causes the number to change continuously.
 Days of the week change automatically.
6. Select **Hour** with кнопки. Change the hour with кнопки. Holding down the button causes the number to change continuously.

7. Select **Minute** with кнопки. Change the minute with кнопки. Holding down the button causes the number to change continuously.

8. Press **Menu/OK** button. The confirmation screen will appear.

Note:

The date can be set between January 1, 2015 and December 31, 2099.

* When setting the schedule, the display returns to the settings screen.
1.7 Schedule TIMER Operation (With Wired Remote Controller BRC1E73)

Outline

Day settings are selected from 4 patterns:

- 7Days
- Weekday/Sat/Sun
- Weekday/Weekend
- Everyday

Up to 5 actions can be set for each day.

Details

Set the startup time and operation stop time.

ON: Startup time, cooling and heating temperature setpoints can be configured.

OFF: Operation stop time, cooling and heating setback temperature setpoints can be configured.

(--: Indicates that the setback function is disabled for this time period.)

__: Indicates that the temperature setpoint and setback temperature setpoint for this time period is not specified. The last active setpoint will be utilized.

Refer to Setback function on page 23 for details of setback function.

Setting the schedule

1. Press Menu/OK button to display the main menu screen.
2. Press ▼▲ buttons to select Schedule.
3. Press Menu/OK button to display the schedule screen.
4. Before setting the schedule, the clock must be set.
 - If the clock has not been set, a screen like the one on the left will appear.
 - Press ▶ buttons to select Yes and press Menu/OK button.
 - The date & time screen will appear.
 - Set the current year, month, day, and time.

2. Press ▼▲ buttons to select the desired function on the schedule screen and press Menu/OK button.
Daily Patterns

1. The schedule screen will appear.
2. Press ▲ buttons to select **Daily Patterns** on the schedule screen.
 The daily patterns screen will appear when **Menu/OK** button is pressed.

2. Press ▲ buttons to select **7 Days**, **Weekday/Sat/Sun**, **Weekday/Weekend** or **Everyday** on the daily patterns screen.
 The confirmation screen will appear when **Menu/OK** button is pressed.

3. Press ▼ buttons to select **Yes** on the confirmation screen.
 Pressing **Menu/OK** button enters the daily patterns in the schedule and takes you back to the main menu screen.

Settings

1. The schedule screen will appear.
2. Press ▲ buttons to select **Settings** on the schedule screen.
 The settings screen will appear when **Menu/OK** button is pressed.

2. Press ▲ buttons to select the day to be set.
 * It cannot be selected in the case of **EVDY**.

3. Input the time for the selected day.
 Press ▼ buttons to move the highlighted item and press ▲ buttons to input the desired operation start time.
 Each press of ▲ buttons moves the numbers by 1 hour or 1 minute.
4

- Press buttons to move the highlighted item and press buttons to configure ON/OFF/-- settings.

--: ON, or OFF changes in sequence when buttons are pressed.

---: The temperature setpoints and setback temperature setpoints become disabled.

ON: The temperature setpoints can be configured.

OFF: The setback temperature setpoints can be configured.

---: The temperature setpoints are disabled.

The cooling and heating temperature setpoints for both ON and OFF (Setback) are configured.

---: Indicates that the temperature setpoint and setback temperature setpoint for this time period is not specified. The last active setpoint will be utilized.

---: Indicates that the setback function is disabled for this time period.

5

- A maximum of five actions per day can be set.

- Press Menu/OK button when settings for each day are completed. The confirmation screen will appear.

To copy the settings for the previous day, press Mode button so that the existing settings will be copied.

Example: The contents for Monday are copied by pressing Mode button after selecting Tuesday.

6

- Press buttons to select Yes on the confirmation screen.

Pressing Menu/OK button confirms the settings for each day and takes you back to the basic screen.
Enabling or disabling the schedule

1. Display the schedule screen.
2. Press ▼▲ buttons to select Enable / Disable on the schedule screen.
 Press Menu/OK button to display the enable/disable screen.

2. Press ▼▲ buttons to select Enable or Disable on the enable/disable screen.
 Press Menu/OK button after selecting the item. The confirmation screen is displayed.

3. Press ◄► buttons to select Yes on the confirmation screen.
 Pressing Menu/OK button confirms the enable/disable setting for the schedule and takes you back to the basic screen.
1.8 Setback Function (With Wired Remote Controller BRC1E73)

The Setback function can be used to maintain the space temperature in an assigned range for an unoccupied period. The setback icon flashes on the LCD of wired remote controller when the unit is turned on by the setback control.

- When enabled, the Setback mode becomes active when the indoor unit is turned off by either the user, a schedule event or an off timer.
- Setback function is not available by default. It can be enabled by the system installer.

1.9 Drain Pump Control
1.9.1 Normal Operation

- The float switch is ON in normal operation.
- When cooling operation starts (thermostat ON), the drain pump turns ON simultaneously.
- After the thermostat turns OFF, the drain pump continues to operate.
1.9.2 If the Float Switch is OFF with the Thermostat ON in Cooling Operation

- When the float switch stays OFF for 5 sec., the thermostat turns OFF.
- After the thermostat turns OFF, the drain pump continues to operate for another 5 minutes.
 *1: If the float switch turns ON again during the residual operation of the drain pump, cooling operation also turns on again (thermostat ON).
 *2: If the float switch remains OFF even after the residual operation of the drain pump has ended, the error code \(A3 \) is determined.
 *3: The drain pump turns OFF once residual operation has ended, then turns ON again after 5 seconds.
 *4: After \(A3 \) is determined and the unit comes to an abnormal stop, the thermostat will remain OFF even if the float switch turns ON again.

1.9.3 If the Float Switch is OFF with the Thermostat OFF in Cooling Operation

- When the float switch stays OFF for 5 sec., the drain pump turns ON.
- If the float switch remains OFF even after the residual operation of the drain pump has ended, the error code \(A3 \) is determined.
- The drain pump turns OFF once residual operation has ended, then turns ON again after 5 seconds.
1.9.4 If the Float Switch Turns OFF and ON Continuously, or the Float Switch Turns OFF While AF Displayed

When the float switch stays OFF for 5 sec., the drain pump turns ON.

∗1: If the float switch continues to turn OFF and ON 5 times consecutively, it is judged as a drain system error and the error code AF is determined.

∗2: The drain pump continues to turn ON/OFF in accordance with the float switch OFF/ON even after AF is determined.

∗3: While the error code AF is active, if the float switch remains OFF even after the residual operation of the drain pump has ended, the error code A3 will be determined.

1.10 Hot Start Control (In Heating Operation Only)

Outline

At startup with thermostat ON or after the completion of defrosting in heating operation, the indoor unit fan is controlled to prevent cold air from blasting out and ensure startup capacity.

Details

Defrost ending or oil return ending or Thermostat ON

Hot start ending conditions
- Lapse of 3 minutes
- \(TH_3 > 34^\circ C \) (93.2\(^{\circ}F \))

Hot start control

<table>
<thead>
<tr>
<th>Fan</th>
<th>Hot start in progress</th>
<th>Normal operation</th>
</tr>
</thead>
<tbody>
<tr>
<td>H/M/L remote controller setting</td>
<td>The fan is OFF before initiating the hot start: OFF</td>
<td>The fan is OFF before initiating the hot start: LL</td>
</tr>
<tr>
<td>LL</td>
<td>Normal operation</td>
<td>Normal operation</td>
</tr>
<tr>
<td>OFF</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Remote controller setting

Level position

\(TH_3 \): Temperature detected by the indoor heat exchanger thermistor (R3T)
1.11 Presence and Floor Sensors (Option)

Outline
With the human presence signal and the floor temperature signal from the optional sensor kit, the system provides the energy saving control, or the comfortable temperature control and airflow direction control preventing the direct draft to the human.
To use sensor related functions, a wired remote controller (BRC1E73) and optional sensor kit (BRYQ60A2W(S)) are necessary to be installed.

Details

1. Draft prevention (with presence sensor)
When the sensor detects human presence during auto-swing operation, the system sets the airflow direction parallel to the floor (position 0) to reduce unpleasant draft.
The operation returns to the normal auto-swing as the sensor detects no human in the room.

- Draft prevention is enabled only when decoration panel BYFQ60C2W1W(S), sensor kit BRYQ60A2W(S) and wired remote controller BRC1E73 are connected to the main unit and draft prevention is set to “enabled” on the wired remote controller.
- Factory setting is “disabled”.
- Draft prevention cannot be activated when individual flap control is set, even if draft prevention is enabled on the wired remote controller.

Setting on the wired remote controller

1. Press Menu/OK button to display the main menu screen.
2. Press ▼▲ buttons to select Configuration and press Menu/OK button.
4. Press ▼▲ buttons to select Enable.
 The confirmation screen will appear when Menu/OK button is pressed.
5. Press ▼▲ buttons to select Yes.
 Press Menu/OK button to confirm the settings and to return to the basic screen.
2. Auto-setback by sensor (with presence sensor)
After pre-determined time has elapsed without detection of human presence, the unit automatically
shifts the target temperature gradually for energy saving.
The target temperature displayed on the remote controller remains same as the initial set value
during the above change of target temperature.
The target temperature shifts within the range of the highest programmable temperature while in
cooling operation and the lowest programmable temperature while in heating operation.
Upon human detection, the target temperature returns to the original setting.

- Auto-setback by sensor is enabled only when decoration panel BYFQ60C2W1W(S), sensor kit
 BRYQ60A2W(S) and wired remote controller BRC1E73 are connected to the main unit and
 auto-setback by sensor is set to “enabled” on the wired remote controller.
- Factory setting is “disabled”.

Setting on the remote controller

1. • Press Cancel button for 4 seconds on the basic screen to display Service
 Settings menu.
 • Press ▼ ▶ buttons to select Energy Saving Options.
 • Press Menu/OK button to display Energy Saving Options menu.

2. • Press ▼ ▶ buttons to select Auto-setback by Sensor.
 • Press Menu/OK button to display Auto-setback by Sensor menu.

3. • Press ▼ ▶ buttons to select Enable/Disable.
 • Press Menu/OK button.

4. • Press ▼ ▶ buttons to select Enable.
 • Press Menu/OK button after selecting the item. Then the confirmation screen
 is displayed.

5. • Press ◀ ▶ buttons to select Yes.
 • Press Menu/OK button to confirm the settings and to return to the Service
 Settings menu.
3. **Auto-off by sensor (with presence sensor)**

After pre-determined time has elapsed without detection of human presence, the unit automatically stops operation.

The auto-off time can be set between 1- 24 hours by the hour. Once the unit stops operation by auto-off function, the system would not restart even if the human is detected again.

- Auto-off by sensor is enabled only when decoration panel BYFQ60C2W1W(S), sensor kit BRYQ60A2W(S) and wired remote controller BRC1E73 are connected to the main unit and auto-off by sensor is set to “enabled” on the wired remote controller.
- Factory setting is "disabled".

Setting on the remote controller

1. Press menu button to display Service Settings menu.
2. Press ▼ buttons to select Energy Saving Options menu.
3. Press ▼ buttons to select Enable.
4. Press ▼ buttons to go into the auto-off time setting.
5. Press ▼ buttons to set auto-off hour(s) (1 ~ 24).
6. Press Menu/OK button. Then the confirmation screen is displayed.
7. Press ▼ buttons to select Yes.
8. Press Menu/OK button to confirm the settings and to return to the Service Settings menu.

4. **Room temperature adjustment by sensing (with floor sensor)**

The system uses living space temperature calculated from temperatures detected by room temperature thermistor (suction air thermistor in the indoor unit) and floor sensor, as the target temperature. Operation becomes more optimized by using not only suction air temperature but floor temperature.

- This function is enabled when decoration panel BYFQ60C2WAWS and sensor kit BRYQ60A2W(S) is connected to the main unit.
1.12 Other Functions

1.12.1 Signal Receiving Sign
When the indoor unit receives a signal from the remote controller, the unit emits a signal receiving sound.

1.12.2 Auto-restart Function
If a power failure (even a momentary one) occurs during the operation, the system restarts automatically in the same conditions as before when the power supply is restored to the conditions prior to the power failure.

Note: It takes 3 minutes to restart the operation because the 3-minute standby function is activated.

1.12.3 Emergency Operation Switch (With Wireless Remote Controller Kit BRC082A41W, BRC082A42W(S))

When the remote controller does not work due to battery failure or the absence thereof, use the emergency operation switch.

Start
Press emergency operation switch.
- The unit runs in the previous mode.
- The system operates with the previously set airflow direction.

Stop
Press emergency operation switch again.
2. Control Specification

2.1 Mode Hierarchy

Outline
The air conditioner control has normal operation mode, forced operation mode, and power transistor test mode for installation and servicing.

Details
Heat Pump Model

Air conditioner control mode
 - Forced operation mode
 - Forced cooling operation (for pump down operation)
 - Power transistor test mode
 - Normal operation mode
 - Fan
 - Cooling (includes drying)
 - Heating
 - Heating
 - Defrosting
 - Stop (indoor unit: OFF)
 - Preheating control
 - Discharging from capacitor
 - Stop

(R22375)

Note: Unless specified otherwise, dry operation command is regarded as cooling operation.
2.2 Frequency Control

Outline

The compressor frequency is determined according to the difference between the room thermistor temperature and the target temperature.

When the shift of the frequency is less than zero (ΔF<0) by PI control, the target frequency is used as the command frequency.

Details

1. **Determine command frequency**
 Command frequency is determined in the following order of priority.
 1. Limiting defrost control time
 2. Forced cooling
 3. Indoor frequency command

2. **Determine upper limit frequency**
 The minimum value is set as an upper limit frequency among the frequency upper limits of the following functions:
 Compressor protection, input current, discharge pipe temperature, heating peak-cut, freeze-up protection, defrost control.

3. **Determine lower limit frequency**
 The maximum value is set as an lower limit frequency among the frequency lower limits of the following functions:
 Four way valve operation compensation, draft prevention, pressure difference upkeep.

4. **Determine prohibited frequency**
 There is a certain prohibited frequency such as a power supply frequency.
Initial Frequency
When starting the compressor, the frequency is initialized according to the ΔD value of the indoor unit.

ΔD signal: Indoor frequency command
The difference between the room thermistor temperature and the target temperature is taken as the ΔD value and is used for ΔD signal of frequency command.

ΔD signal for cooling

<table>
<thead>
<tr>
<th>Temperature difference</th>
<th>ΔD signal</th>
</tr>
</thead>
<tbody>
<tr>
<td>–2.0°C (–3.6°F)</td>
<td>*OFF</td>
<td>0°C (0°F)</td>
<td>4</td>
<td>2.0°C (3.6°F)</td>
<td>8</td>
<td>4.0°C (7.2°F)</td>
<td>12</td>
</tr>
<tr>
<td>–1.5°C (–2.7°F)</td>
<td>1</td>
<td>0.5°C (0.9°F)</td>
<td>5</td>
<td>2.5°C (4.5°F)</td>
<td>9</td>
<td>4.5°C (8.1°F)</td>
<td>13</td>
</tr>
<tr>
<td>–1.0°C (–1.8°F)</td>
<td>2</td>
<td>1.0°C (1.8°F)</td>
<td>6</td>
<td>3.0°C (5.4°F)</td>
<td>10</td>
<td>5.0°C (9.0°F)</td>
<td>14</td>
</tr>
<tr>
<td>–0.5°C (–0.9°F)</td>
<td>3</td>
<td>1.5°C (2.7°F)</td>
<td>7</td>
<td>3.5°C (6.3°F)</td>
<td>11</td>
<td>5.5°C (9.9°F)</td>
<td>15</td>
</tr>
</tbody>
</table>

ΔD signal for heating

<table>
<thead>
<tr>
<th>Temperature difference</th>
<th>ΔD signal</th>
</tr>
</thead>
<tbody>
<tr>
<td>–1.5°C (–2.7°F)</td>
<td>*OFF</td>
<td>0.5°C (0.9°F)</td>
<td>4</td>
<td>2.5°C (4.5°F)</td>
<td>8</td>
<td>4.5°C (8.1°F)</td>
<td>12</td>
</tr>
<tr>
<td>–1.0°C (–1.8°F)</td>
<td>1</td>
<td>1.0°C (1.8°F)</td>
<td>5</td>
<td>3.0°C (5.4°F)</td>
<td>9</td>
<td>5.0°C (9.0°F)</td>
<td>13</td>
</tr>
<tr>
<td>–0.5°C (–0.9°F)</td>
<td>2</td>
<td>1.5°C (2.7°F)</td>
<td>6</td>
<td>3.5°C (6.3°F)</td>
<td>10</td>
<td>5.5°C (9.9°F)</td>
<td>14</td>
</tr>
<tr>
<td>0°C (0°F)</td>
<td>3</td>
<td>2.0°C (3.6°F)</td>
<td>7</td>
<td>4.0°C (7.2°F)</td>
<td>11</td>
<td>6.0°C (10.8°F)</td>
<td>15</td>
</tr>
</tbody>
</table>

*OFF = Thermostat OFF

PI Control

1. P control
 The ΔD value is calculated in each sampling time (20 seconds), and the frequency is adjusted according to its difference from the frequency previously calculated.

2. I control
 If the operating frequency does not change for more than a certain fixed time, the frequency is adjusted according to the ΔD value.
 When ΔD value is low, the frequency is lowered.
 When ΔD value is high, the frequency is increased.

3. Frequency control when other controls are functioning
 - When frequency is dropping:
 Frequency control is carried out only when the frequency drops.
 - For limiting lower limit:
 Frequency control is carried out only when the frequency rises.

4. Upper and lower limit of frequency by PI control
 The frequency upper and lower limits are set according to the command of the indoor unit.
 When the indoor or outdoor unit quiet operation command comes from the indoor unit, the upper limit frequency is lower than the usual setting.
2.3 Controls at Mode Changing/Start-up

2.3.1 Preheating Control

Outline
The inverter operation in open phase starts with the conditions of the outdoor temperature, the discharge pipe temperature, the radiation fin temperature and the preheating command from the indoor unit.

Details
Outdoor temperature $\geq -2.5^\circ\text{C (27.5°F)} \rightarrow$ Control A (preheating for normal state)
Outdoor temperature $< -2.5^\circ\text{C (27.5°F)} \rightarrow$ Control B (preheating of increased capacity)

Control A
- ON condition
 - Discharge pipe temperature $< 0^\circ\text{C (32.0°F)}$
 - Radiation fin temperature $< 85^\circ\text{C (185°F)}$
- OFF condition
 - Discharge pipe temperature $> 2^\circ\text{C (35.6°F)}$
 - Radiation fin temperature $\geq 90^\circ\text{C (194°F)}$

Control B
- ON condition
 - Discharge pipe temperature $< 10^\circ\text{C (50.0°F)}$
 - Radiation fin temperature $< 85^\circ\text{C (185°F)}$
- OFF condition
 - Discharge pipe temperature $> 12^\circ\text{C (53.6°F)}$
 - Radiation fin temperature $\geq 90^\circ\text{C (194°F)}$

2.3.2 Four Way Valve Switching

Outline
The four way valve coil is energized/not energized depending on the operation mode. (Heating: ON, Cooling/Dry/Defrost: OFF)
In order to eliminate the switching sound as the four way valve coil switches from ON to OFF when the heating is stopped, the OFF delay switch of the four way valve is carried out.

Details
OFF delay switch of four way valve
The four way valve coil is energized for 160 seconds after the operation is stopped.
2.3.3 Four Way Valve Operation Compensation

Outline
At the beginning of operation as the four way valve is switched, the pressure difference to activate the four way valve is acquired when the output frequency is higher than a certain fixed frequency, for a certain fixed time.

Details
Starting Conditions
1. When the compressor starts and the four way valve switches from OFF to ON
2. When the four way valve switches from ON to OFF during operation
3. When the compressor starts after resetting
4. When the compressor starts after the fault of four way valve switching
The lower limit of frequency keeps A Hz for B seconds with any conditions 1 through 4 above. When the outdoor temperature is above C in heating, the frequency decreases depending on the outdoor temperature.

<table>
<thead>
<tr>
<th></th>
<th>09/12 class</th>
<th>15/18 class</th>
</tr>
</thead>
<tbody>
<tr>
<td>A (Hz)</td>
<td>40</td>
<td>54</td>
</tr>
<tr>
<td>B (seconds)</td>
<td>60</td>
<td>70</td>
</tr>
<tr>
<td>C (°C)</td>
<td>10</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>59</td>
</tr>
</tbody>
</table>

2.3.4 3-Minute Standby
Turning on the compressor is prohibited for 3 minutes after turning it off. (The function is not activated when defrosting.)

2.3.5 Compressor Protection Function
When turning the compressor from OFF to ON, the upper limit of frequency is set as follows. (The function is not activated when defrosting.)

<table>
<thead>
<tr>
<th></th>
<th>09/12 class</th>
<th>15/18 class</th>
</tr>
</thead>
<tbody>
<tr>
<td>A (Hz)</td>
<td>40</td>
<td>52</td>
</tr>
<tr>
<td>B (Hz)</td>
<td>54</td>
<td>68</td>
</tr>
<tr>
<td>C (Hz)</td>
<td>72</td>
<td>80</td>
</tr>
<tr>
<td>D (Hz)</td>
<td>90</td>
<td>—</td>
</tr>
<tr>
<td>E (Hz)</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>F (seconds)</td>
<td>180</td>
<td>300</td>
</tr>
<tr>
<td>G (seconds)</td>
<td>420</td>
<td>200</td>
</tr>
<tr>
<td>H (seconds)</td>
<td>180</td>
<td>460</td>
</tr>
<tr>
<td>J (seconds)</td>
<td>120</td>
<td>—</td>
</tr>
<tr>
<td>K (seconds)</td>
<td>—</td>
<td>—</td>
</tr>
</tbody>
</table>
2.4 Discharge Pipe Temperature Control

Outline

The discharge pipe temperature is used as the internal temperature of the compressor. If the discharge pipe temperature rises above a certain level, the upper limit of frequency is set to keep the discharge pipe temperature from rising further.

Details

<table>
<thead>
<tr>
<th>Zone</th>
<th>Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stop zone</td>
<td>When the temperature reaches the stop zone, the compressor stops.</td>
</tr>
<tr>
<td>Dropping zone</td>
<td>The upper limit of frequency decreases.</td>
</tr>
<tr>
<td>Keep zone</td>
<td>The upper limit of frequency is kept.</td>
</tr>
<tr>
<td>Up zone</td>
<td>The upper limit of frequency increases.</td>
</tr>
<tr>
<td>Reset zone</td>
<td>The upper limit of frequency is canceled.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>09/12 class</th>
<th>15/18 class</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>°C</td>
<td>°F</td>
</tr>
<tr>
<td>A</td>
<td>110</td>
<td>230.0</td>
</tr>
<tr>
<td>B</td>
<td>103</td>
<td>217.4</td>
</tr>
<tr>
<td>C</td>
<td>98</td>
<td>208.4</td>
</tr>
<tr>
<td>D</td>
<td>93</td>
<td>199.4</td>
</tr>
<tr>
<td>E</td>
<td>88</td>
<td>190.4</td>
</tr>
</tbody>
</table>
2.5 Input Current Control

Outline

The microcomputer calculates the input current while the compressor is running, and sets the frequency upper limit based on the input current. In case of heat pump models, this control is the upper limit control of frequency and takes priority over the lower limit control of four way valve operation compensation.

Details

Frequency control in each zone

Stop zone
- After the input current remains in the stop zone for 2.5 seconds, the compressor is stopped.

Dropping zone
- The upper limit of the compressor frequency is defined as operation frequency – 2 Hz.
- After this, the output frequency is lowered by 2 Hz every second until it reaches the keep zone.

Keep zone
- The present maximum frequency goes on.

Reset zone
- Limit of the frequency is canceled.

<table>
<thead>
<tr>
<th></th>
<th>09/12 class</th>
<th>15 class</th>
<th>18 class</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cooling</td>
<td>Heating</td>
<td>Cooling</td>
</tr>
<tr>
<td>A (A)</td>
<td>12</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>B (A)</td>
<td>7</td>
<td>7.5</td>
<td>8</td>
</tr>
<tr>
<td>C (A)</td>
<td>6</td>
<td>6.5</td>
<td>7</td>
</tr>
</tbody>
</table>

Limitation of current dropping and stop value according to the outdoor temperature
- The current drops when outdoor temperature becomes higher than a certain level (depending on the model).
2.6 Freeze-up Protection Control

During cooling operation, the signal sent from the indoor unit determines the frequency upper limit and prevents freezing of the indoor heat exchanger. (The signal from the indoor unit is divided into zones.) The operating frequency limitation is judged with the indoor heat exchanger temperature.

![Diagram of Freeze-up Protection Control]

2.7 Heating Peak-cut Control

During heating operation, the indoor heat exchanger temperature determines the frequency upper limit to prevent abnormal high pressure. The operating frequency limitation is judged with the indoor heat exchanger temperature.

![Diagram of Heating Peak-cut Control]

<table>
<thead>
<tr>
<th>Zone</th>
<th>Control</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stop zone</td>
<td>When the temperature reaches the stop zone, the compressor stops.</td>
</tr>
<tr>
<td>Dropping zone</td>
<td>The upper limit of frequency decreases.</td>
</tr>
<tr>
<td>Keep zone</td>
<td>The upper limit of frequency is kept.</td>
</tr>
<tr>
<td>Up zone</td>
<td>The upper limit of frequency increases.</td>
</tr>
<tr>
<td>Reset zone</td>
<td>The upper limit of frequency is canceled.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Zone</th>
<th>09/12 class</th>
<th>15 class</th>
<th>18 class</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>57.5°C (135.5°F)</td>
<td>60°C (140.0°F)</td>
<td>60°C (140.0°F)</td>
</tr>
<tr>
<td>B</td>
<td>55°C (131.0°F)</td>
<td>54°C (129.2°F)</td>
<td>55°C (131.0°F)</td>
</tr>
<tr>
<td>C</td>
<td>52°C (125.6°F)</td>
<td>51°C (123.8°F)</td>
<td>52°C (125.6°F)</td>
</tr>
<tr>
<td>D</td>
<td>50°C (122.0°F)</td>
<td>49°C (120.2°F)</td>
<td>50°C (122.0°F)</td>
</tr>
<tr>
<td>E</td>
<td>45°C (113.0°F)</td>
<td>44°C (111.2°F)</td>
<td>45°C (113.0°F)</td>
</tr>
</tbody>
</table>
2.8 Outdoor Fan Control

1. Fan ON control to cool down the electrical box
 The outdoor fan is turned ON when the electrical box temperature is high while the compressor is OFF.

2. Fan OFF control during defrosting
 The outdoor fan is turned OFF during defrosting.

3. Fan OFF delay when stopped
 The outdoor fan is turned OFF 60 ~ 70 seconds after the compressor stops.

4. Fan speed control for pressure difference upkeep
 The rotation speed of the outdoor fan is controlled for keeping the pressure difference during cooling operation with low outdoor temperature.
 • When the pressure difference is low, the rotation speed of the outdoor fan is reduced.
 • When the pressure difference is high, the rotation speed of the outdoor fan is controlled as well as normal operation.

5. Fan speed control during forced cooling operation
 The outdoor fan is controlled as well as normal operation during forced cooling operation.

6. Fan ON/OFF control when operation (cooling, heating, dry) starts/stops
 The outdoor fan is turned ON when the operation starts. The outdoor fan is turned OFF when the operation stops.

2.9 Liquid Compression Protection Function

Outline
In order to increase the dependability of the compressor, the compressor is stopped according to the outdoor temperature.

Details
Operation stops depending on the outdoor temperature
Compressor turns off under the conditions that the system is in cooling operation and outdoor temperature is below 0°C (32°F).
2.10 Defrost Control

Outline
Defrosting is carried out by the cooling cycle (reverse cycle). The defrosting time or outdoor heat exchanger temperature must be more than a certain value to finish defrosting.

Details

Conditions for Starting Defrost
- The starting conditions are determined with the outdoor temperature and the outdoor heat exchanger temperature.
- The system is in heating operation.
- The compressor operates for 6 minutes.
- More than A minutes (depending on the duration of the previous defrost control) of accumulated time have passed since the start of the operation, or ending the previous defrosting.

Conditions for Canceling Defrost
The judgment is made with the outdoor heat exchanger temperature (B).

<table>
<thead>
<tr>
<th></th>
<th>A (minute)</th>
<th>09/12 class</th>
<th>15/18 class</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>20 ~ 25</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>(°C)</td>
<td>2 ~ 20</td>
<td>6 ~ 30</td>
</tr>
<tr>
<td></td>
<td>(°F)</td>
<td>35.6 ~ 68.0</td>
<td>42.8 ~ 86.0</td>
</tr>
<tr>
<td>C</td>
<td>(Hz)</td>
<td>64</td>
<td>48</td>
</tr>
<tr>
<td>D</td>
<td>(Hz)</td>
<td>64</td>
<td>42</td>
</tr>
<tr>
<td>E</td>
<td>(seconds)</td>
<td>40</td>
<td>60</td>
</tr>
<tr>
<td>F</td>
<td>(seconds)</td>
<td>60</td>
<td>60</td>
</tr>
<tr>
<td>G</td>
<td>(seconds)</td>
<td>510</td>
<td>340</td>
</tr>
<tr>
<td>H</td>
<td>(seconds)</td>
<td>50</td>
<td>60</td>
</tr>
<tr>
<td>J</td>
<td>(seconds)</td>
<td>8</td>
<td>5</td>
</tr>
<tr>
<td>K</td>
<td>(pulse)</td>
<td>400</td>
<td>450</td>
</tr>
<tr>
<td>L</td>
<td>(pulse)</td>
<td>300 ~ 450</td>
<td></td>
</tr>
<tr>
<td>M</td>
<td>(pulse)</td>
<td>350</td>
<td>300</td>
</tr>
</tbody>
</table>

(R21661)
2.11 Electronic Expansion Valve Control

Outline

The following items are included in the electronic expansion valve control.

Electronic expansion valve is fully closed
1. Electronic expansion valve is fully closed when turning on the power.
2. Pressure equalizing control

Open Control
1. Electronic expansion valve control when starting operation
2. Electronic expansion valve control when the frequency changes
3. Electronic expansion valve control for defrosting
4. Electronic expansion valve control when the discharge pipe temperature is abnormally high
5. Electronic expansion valve control when the discharge pipe thermistor is disconnected

Feedback Control
Target discharge pipe temperature control

Details

The following are the examples of electronic expansion valve control which function in each operation mode.

<table>
<thead>
<tr>
<th>Control</th>
<th>Status</th>
<th>Power on</th>
<th>Compressor stop</th>
<th>Operation start</th>
<th>Frequency change under starting control</th>
<th>Frequency change under target discharge pipe temperature control</th>
<th>Discharge pipe thermistor disconnection control</th>
<th>Frequency change under discharge pipe thermistor disconnection control</th>
<th>During defrost control</th>
</tr>
</thead>
<tbody>
<tr>
<td>Starting operation control</td>
<td>---</td>
<td>⬤</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Control when the frequency changes</td>
<td>---</td>
<td>---</td>
<td>⬤</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Target discharge pipe temperature control</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>⬤</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Discharge pipe thermistor disconnection control</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>⬤</td>
<td>⬤</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>High discharge pipe temperature control</td>
<td>---</td>
<td>⬤</td>
<td>⬤</td>
<td>⬤</td>
<td>⬤</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Defrost control (heating only)</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Pressure equalizing control</td>
<td>⬤</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Opening limit control</td>
<td>---</td>
<td>⬤</td>
<td>⬤</td>
<td>⬤</td>
<td>⬤</td>
<td>⬤</td>
<td>⬤</td>
<td>---</td>
<td>---</td>
</tr>
</tbody>
</table>

- ⬤: Available
- ---: Not available
2.11.1 Initialization as Power Supply On
The electronic expansion valve is initialized (fully closed) when the power is turned on. Then, the valve opening is set and the pressure is equalized.

2.11.2 Pressure Equalizing Control
When the compressor is stopped, the pressure equalizing control is activated. The electronic expansion valve opens and the pressure is equalized.

2.11.3 Opening Limit Control
The maximum and minimum opening of the electronic expansion valve are limited.

<table>
<thead>
<tr>
<th></th>
<th>09/12 class</th>
<th>15/18 class</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum opening (pulse)</td>
<td>470</td>
<td>480</td>
</tr>
<tr>
<td>Minimum opening (pulse)</td>
<td>32</td>
<td>52</td>
</tr>
</tbody>
</table>

The electronic expansion valve is fully closed when cooling operation stops, and is opened at a fixed degree during defrosting.

2.11.4 Starting Operation Control
The electronic expansion valve opening is controlled when the operation starts, thus preventing the superheating or liquid compression.

2.11.5 Control when the frequency changes
When the target discharge pipe temperature control is active, if the target frequency changes to a specified value in a certain time period, the target discharge pipe temperature control is canceled and the target opening of the electronic expansion valve is changed according to the frequency shift.

2.11.6 High Discharge Pipe Temperature Control
When the compressor is operating, if the discharge pipe temperature exceeds a certain value, the electronic expansion valve opens and the refrigerant runs to the low pressure side. This procedure lowers the discharge pipe temperature.

2.11.7 Discharge Pipe Thermistor Disconnection Control

Outline
The disconnection of the discharge pipe thermistor is detected by comparing the discharge pipe temperature with the condensation temperature. If the discharge pipe thermistor is disconnected, the electronic expansion valve opens according to the outdoor temperature and the operation frequency, operates for a specified time, and then stops. After 3 minutes, the operation restarts and checks if the discharge pipe thermistor is disconnected. If the discharge pipe thermistor is disconnected, the system stops after operating for a specified time. If the disconnection is detected repeatedly, the system is shut down. When the compressor runs for 60 minutes without any error, the error counter is reset.

Details
Determining thermistor disconnection
When the starting control finishes, the detection timer for disconnection of the discharge pipe thermistor (A seconds) starts. When the timer is over, the following adjustment is made.
1. When the operation mode is cooling
 When the following condition is fulfilled, the discharge pipe thermistor disconnection is ascertained.
 Discharge pipe temperature +6°C (+10.8°F) < outdoor heat exchanger temperature
2. When the operation mode is heating
 When the following condition is fulfilled, the discharge pipe thermistor disconnection is
 ascertained.

 Discharge pipe temperature +6°C (+10.8°F) < indoor heat exchanger temperature

<table>
<thead>
<tr>
<th></th>
<th>09/12 class</th>
<th>15/18 class</th>
</tr>
</thead>
<tbody>
<tr>
<td>A (seconds)</td>
<td>720</td>
<td>540</td>
</tr>
</tbody>
</table>

 When the thermistor is disconnected
 When the disconnection is ascertained, the compressor continues operation for 9 minutes and then
 stops.
 If the compressor stops repeatedly, the system is shut down.

2.1.8 Target Discharge Pipe Temperature Control
The target discharge pipe temperature is obtained from the indoor and outdoor heat exchanger
temperature, and the electronic expansion valve opening is adjusted so that the actual discharge
pipe temperature becomes close to the target discharge pipe temperature. (Indirect SH
(superheating) control using the discharge pipe temperature)

The electronic expansion valve opening and the target discharge pipe temperature are adjusted
every A seconds. The opening degree of the electronic expansion valve is adjusted by the
following.

- Target discharge pipe temperature
- Actual discharge pipe temperature
- Previous discharge pipe temperature

<table>
<thead>
<tr>
<th></th>
<th>All outdoor units</th>
</tr>
</thead>
<tbody>
<tr>
<td>A (seconds)</td>
<td>10 ~ 30</td>
</tr>
</tbody>
</table>

★ The time depends on the opening of the electronic expansion valve.
2.12 Malfunctions

2.12.1 Sensor Malfunction Detection

Sensor malfunction can be detected in the following thermistor:
1. Outdoor heat exchanger thermistor
2. Discharge pipe thermistor
3. Radiation fin thermistor
4. Outdoor temperature thermistor

2.12.2 Detection of Overcurrent and Overload

Outline
An excessive output current is detected and the OL temperature is observed to protect the compressor.

Details
- If the OL (compressor head) temperature exceeds 130°C (266°F), the system shuts down the compressor.
- If the inverter current exceeds 12.0 ~ 12.5 A, the system shuts down the compressor.
 The upper limit of the current decreases when the outdoor temperature exceeds a certain level.
Part 5
Remote Controller

1. Wired Remote Controller (BRC1E73) ... 45
2. Wireless Remote Controller Kit (BRC082A41W, BRC082A42W(S)) 51
1. Wired Remote Controller (BRC1E73)

- 1. Operation mode selector button
- 2. Fan speed control button
- 3. Menu/OK button
- 4. Up button ▲
- 5. Down button ▼
- 6. Right button ►
- 7. Left button ◀
- 8. On/Off button
- 9. Operation lamp
- 10. Cancel button
- 11. LCD (with backlight)
1. **Operation mode selector button**
 - Press this button to select the operation mode of your preference.
 - *Available modes vary with the indoor unit model.

2. **Fan speed control button**
 - Press this button to select the fan speed of your preference.
 - *Available fan speeds vary with the indoor unit model.

3. **Menu/OK button**
 - Used to enter the main menu.
 - Used to enter the selected item.

4. **Up button ▲**
 - Used to raise the setpoint.
 - The item above the current selection will be highlighted.
 - (The highlighted items will be scrolled continuously when the button is continuously pressed.)
 - Used to change the selected item.

5. **Down button ▼**
 - Used to lower the setpoint.
 - The item below the current selection will be highlighted.
 - (The highlighted items will be scrolled continuously when the button is continuously pressed.)
 - Used to change the selected item.

6. **Right button ►**
 - Used to highlight the next items on the right-hand side.
 - Each screen is scrolled in the right-hand direction.

7. **Left button ◀**
 - Used to highlight the next items on the left-hand side.
 - Each screen is scrolled in the left-hand direction.

8. **On/Off button**
 - Press this button and system will start.
 - Press this button again to stop the system.

9. **Operation lamp**
 - This lamp illuminates solid green during normal operation.
 - This lamp flashes if an error occurs.

10. **Cancel button**
 - Used to return to the previous screen.

11. **LCD (with backlight)**
 - The backlight will be illuminated for approximately 30 seconds by pressing any button.
 - If two remote controllers are used to control a single indoor unit, only the controller accessed first will have backlight functionality.
Liquid Crystal Display

- Three types of display mode (Standard, Detailed and Simple) are available.
- Standard display is set by default.
- Detailed and Simple displays can be selected in the main menu.

Standard display

1. Operation mode
2. Fan Speed
6. Ventilation
8. () Scheduled
7. () Key Lock
3. Setpoint
4. Stand by for Defrost/Hot start
5. Message
11. Setback
10. Changeover controlled by the master indoor unit
9. Under centralized control

Detailed display

- The airflow direction, clock, and selectable item appear on Detailed display screen in addition to the items appearing on Standard display.

12. Airflow Direction
 (Displayed only when the indoor unit is turned on.)
13. Current Day/Time
 (12/24 hour time display)
14. Selectable Display Item

No Fan speed display
(with no fan speed control function)
No Airflow Direction display
(with no airflow direction settings)
No Clock display
(when the clock has not been set yet)
No Selectable Display Item
(with no selectable display item selected)
Simple display

1. Operation mode
 - Auto
 - Cool
 - Set to Heat
 - Cool
 - Room

2. Fan speed
 - <Simple display example>

3. Setpoint
 - 70°F
 - 74°F

4. Stand by for Defrost/Hot start

11. Setback

14. Selectable Display Item

Note for all display modes

- Depending on the field settings, while the indoor unit is stopped, OFF may be displayed instead of the operation mode and/or the setpoint may not be displayed.
1. Operation mode
- Used to display the current operation mode: Cool, Heat, Vent, Fan, Dry or Auto.
- In Auto mode, the actual operation mode (Cool or Heat) will be also displayed.
- Operation mode cannot be changed when OFF is displayed.
Operation mode can be changed after starting operation.

“Error: Push Menu button”
“Warning: Push Menu button”
- Displayed if an error or warning is detected.

“Time to clean filter”
“Time to clean element”
“Time to clean filter & element”
- Displayed as a reminder when it is time to clean the filter and/or element.

2. Fan Speed
- Used to display the fan speed that is set for the indoor unit.
- The fan speed will not be displayed if the connected model does not have fan speed control functionality.

3. Setpoint
- Used to display the setpoint for the indoor unit.
- Use the Celsius/Fahrenheit item in the main menu to select the temperature unit (Celsius or Fahrenheit).

4. Stand by for Defrost/Hot start
 “STANDBY”
If ventilation icon is displayed in this field:
- Indicates that an energy recovery ventilator (ERV) is connected.
 For details, refer to the Operation Manual of the ERV.

5. Message
The following messages may be displayed.
“This function is not available”
- Displayed for a few seconds when an Operation button is pressed and the indoor unit does not provide the corresponding function.
- In a remote control group, the message will not appear if at least one of the indoor units provides the corresponding function.

6. Ventilation
- Displayed when an energy recovery ventilator is connected.
- Ventilation Mode icon “ERV ERV BYPASS”
 These icons indicate the current ventilation mode (ERV only) (AUTO, ERV, BYPASS).
- Air Purify ICON “PURIFY”
 This icon indicates that the air purifying unit (Optional) is in operation.

7. Key Lock
- Displayed when the key lock is set.

8. Scheduled
- Displayed if the Schedule or Off timer is enabled.

9. Under Centralized control “CENTRAL”
- Displayed if the system is under the management of a multi-zone controller (Optional) and the operation of the system through the remote controller is limited.

10. Changeover controlled by the master indoor unit “MASTER”
(VRV only)
- Displayed when another indoor unit on the system has the authority to change the operation mode between cool and heat.
11. Setback “SETBACK”
 - The setback icon flashes when the unit is turned on by the setback control.

12. Airflow Direction “”
 - Displayed when the airflow direction and swing are set.
 - If the connected indoor unit model does not include oscillating louvers this item will not be displayed.

13. Current Day/Time (12/24 hour time display)
 - Displayed if the clock is set.
 - If the clock is not set, “--:--” will be displayed.
 - 12 hour time format is displayed by default.
 - Select 12/24 hour time display option in the main menu under “Clock & Calendar”.

14. Selectable Display Item
 - Room temperature is selected by default.
 - For other choices see the operation manual.

15. Unable to schedule
 - Displayed when the clock needs to be set.
 - The schedule function will not work unless the clock is set.
2. Wireless Remote Controller Kit (BRC082A41W, BRC082A42W(S))
<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>DISPLAY ▲ (SIGNAL TRANSMISSION)</td>
<td>This lights up when a signal is being transmitted.</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>DISPLAY ﾏ, ﾑ, ﾏ, ﾑ (OPERATION MODE)</td>
<td>This display shows the current OPERATION MODE.</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>DISPLAY Ｈ・Ｇ・Ｌ・Ｇ・Ｇ・Ｐ (SET TEMPERATURE)</td>
<td>This display shows the set temperature.</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>DISPLAY ﾖ・ﾙ・ﾖ・ﾖ・ﾖ・ﾖ (PROGRAMMED TIME)</td>
<td>This display shows PROGRAMMED TIME of the system start or stop.</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>DISPLAY ▲ (SWING FLAP)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>DISPLAY ▶ ▼ (FAN SPEED)</td>
<td>The display shows the set fan speed.</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>DISPLAY ▶ / TEST (INSPECTION/TEST OPERATION)</td>
<td>When the INSPECTION/TEST OPERATION button is pressed, the display shows the system mode is in.</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>ON/OFF BUTTON</td>
<td>Press the button and the system will start. Press the button again and the system will stop.</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>FAN SPEED CONTROL BUTTON</td>
<td>Press this button to select the fan speed, LOW, MEDIUM or HIGH, of your choice.</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>TEMPERATURE SETTING BUTTON</td>
<td>Use this button for setting temperature.</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>TIMER MODE START/STOP BUTTON</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>TIMER RESERVE/CANCEL BUTTON</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>AIRFLOW DIRECTION ADJUST BUTTON</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>OPERATION MODE SELECTOR BUTTON</td>
<td>Press this button to select OPERATION MODE.</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>FILTER SIGN RESET BUTTON</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>INSPECTION/TEST OPERATION BUTTON</td>
<td>This button is used only by qualified service persons for maintenance purposes.</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>EMERGENCY OPERATION SWITCH</td>
<td>This switch is readily used if the remote controller does not work.</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>RECEIVER</td>
<td>This receives the signals from the remote controller.</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>OPERATION LAMP (Red)</td>
<td>This lamp stays lit while the air conditioner runs. It blinks when the unit is in trouble.</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>TIMER LAMP (Green)</td>
<td>This lamp stays lit while the timer is set.</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>AIR FILTER CLEANING TIME INDICATOR LAMP (Red)</td>
<td>Lights up when it is time to clean the air filter.</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>DEFROST LAMP (Orange)</td>
<td>Lights up when the defrosting operation has started.</td>
<td></td>
</tr>
</tbody>
</table>
Part 6
Service Diagnosis

1. General Problem Symptoms and Check Items ...55
2. Troubleshooting with LED ..56
 2.1 Indoor Unit .. 56
 2.2 Outdoor Unit ... 56
3. Service Diagnosis ..57
 3.1 Wired Remote Controller (BRC1E73) ... 57
 3.2 Wireless Remote Controller Kit (BRC082A41W, BRC082A42W(S)) 59
4. Troubleshooting ..63
 4.1 Error Codes and Description .. 63
 4.2 Indoor Unit PCB Abnormality ... 64
 4.3 Drain Level Control System Abnormality ... 65
 4.4 Indoor Fan Motor (DC Motor) or Related Abnormality 66
 4.5 Humidifier or Related Abnormality ... 68
 4.6 Thermistor or Related Abnormality ... 69
 4.7 Presence Sensor or Floor Sensor Abnormality .. 70
 4.8 Remote Controller Thermistor Abnormality .. 71
 4.9 Signal Transmission Error (Between Indoor Unit and Remote Controller) ... 72
 4.10 Signal Transmission Error (Between MAIN Remote Controller and SUB Remote Controller) 73
 4.11 Low-voltage Detection or Over-voltage Detection 74
 4.12 Signal Transmission Error (Between Indoor Unit and Outdoor Unit) 76
 4.13 Mismatching of Indoor Unit and Outdoor Unit ... 78
 4.14 Outdoor Unit PCB Abnormality ... 79
 4.15 OL Activation (Compressor Overload) .. 80
 4.16 Compressor Lock ... 82
 4.17 DC Fan Lock (Outdoor Fan Motor) .. 83
 4.18 Input Overcurrent Detection .. 84
 4.19 Four Way Valve Abnormality .. 85
 4.20 Discharge Pipe Temperature Control ... 87
 4.21 High Pressure Control in Cooling .. 88
 4.22 System Shutdown due to Compressor Internal Temperature Abnormality .. 90
 4.23 Compressor System Sensor Abnormality ... 91
 4.24 Position Sensor Abnormality ... 92
 4.25 Thermistor or Related Abnormality (Outdoor Unit) 94
 4.26 Electrical Box Temperature Rise ... 96
 4.27 Radiation Fin Temperature Rise .. 97
 4.28 Output Overcurrent Detection .. 98
5. Check ... 100
 5.1 Thermistor Resistance Check ... 100
 5.2 Indoor Fan Motor Connector Output Check ... 101
 5.3 Power Supply Waveforms Check ... 101
 5.4 Electronic Expansion Valve Check .. 102
 5.5 Four Way Valve Performance Check ... 103
 5.6 Inverter Unit Refrigerant System Check .. 103
 5.7 Inverter Analyzer Check .. 104
 5.8 Rotation Pulse Check on the Outdoor Unit PCB .. 106
 5.9 Installation Condition Check ... 107
 5.10 Discharge Pressure Check ... 107
 5.11 Outdoor Fan System Check ... 108
 5.12 Main Circuit Short Check ... 108
 5.13 Power Module Check ... 110
1. General Problem Symptoms and Check Items

<table>
<thead>
<tr>
<th>Symptom</th>
<th>Check Item</th>
<th>Details</th>
<th>Reference Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>The unit does not operate.</td>
<td>Check the power supply.</td>
<td>Check if the rated voltage is supplied.</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>Check the type of the indoor unit.</td>
<td>Check if the indoor unit type is compatible with the outdoor unit.</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>Check the outdoor temperature.</td>
<td>Heating/cooling operations are not available when the outdoor temperature is out of the operation limit. Check the reference page for the operation limit.</td>
<td>133</td>
</tr>
<tr>
<td></td>
<td>Diagnose with remote controller indication.</td>
<td>—</td>
<td>63</td>
</tr>
<tr>
<td></td>
<td>Check the wireless remote controller address.</td>
<td>Check if address settings for the wireless remote controller and indoor unit are correct.</td>
<td>72, 73</td>
</tr>
<tr>
<td></td>
<td>If using 2 remote controllers for 1 indoor unit, check MAIN/SUB setting.</td>
<td>Check if the MAIN/SUB setting is correct.</td>
<td></td>
</tr>
<tr>
<td>Operation sometimes stops.</td>
<td>Check the power supply.</td>
<td>A power failure of 2 to 10 cycles stops air conditioner operation. (Operation lamp OFF)</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>Check the outdoor temperature.</td>
<td>Heating/cooling operations are not available when the outdoor temperature is out of the operation limit. Check the reference page for the operation limit.</td>
<td>133</td>
</tr>
<tr>
<td></td>
<td>Diagnose with remote controller indication.</td>
<td>—</td>
<td>63</td>
</tr>
<tr>
<td>The unit operates but does not cool, or does not heat.</td>
<td>Check for wiring and piping errors in the connection between the indoor unit and outdoor unit.</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>Check for thermistor detection errors.</td>
<td>Check if the thermistor is mounted securely.</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>Check for faulty operation of the electronic expansion valve.</td>
<td>Set the unit to cooling operation, and check the temperature of the liquid pipe to see if the electronic expansion valve works.</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>Diagnose with remote controller indication.</td>
<td>—</td>
<td>63</td>
</tr>
<tr>
<td></td>
<td>Diagnose by service port pressure and operating current.</td>
<td>Check for refrigerant shortage.</td>
<td>—</td>
</tr>
<tr>
<td>Large operating noise and vibrations</td>
<td>Check the output voltage of the power module.</td>
<td>—</td>
<td>110</td>
</tr>
<tr>
<td></td>
<td>Check the power module.</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>Check the installation condition.</td>
<td>Check if the required spaces for installation (specified in the installation manual) are provided.</td>
<td>—</td>
</tr>
</tbody>
</table>
2. Troubleshooting with LED

2.1 Indoor Unit

Operation Lamp

The operation lamp blinks when any of the following errors is detected.

1. When a protection device of the indoor or outdoor unit is activated, or when the thermistor malfunctions.
2. When a signal transmission error occurs between the indoor and outdoor units.

In either case, conduct the diagnostic procedure described in the following pages.

With wired remote controller (BRC1E73)

With wireless remote controller kit (BRC082A41W, BRC082A42W(S))

In case of wireless remote controller, a transmitter board (A2P) and a receiver (A3P) are installed on indoor unit. When the error occurs, the operation lamp on the receiver (A3P) blinks.

2.2 Outdoor Unit

The outdoor unit has one green LED (LED A) on the PCB. When the microcomputer works in order, the LED A blinks. (Refer to pages 10, 11 for the location of LED A.)
3. Service Diagnosis

3.1 Wired Remote Controller (BRC1E73)

On power-up, the message “Checking the connection. Please standby.” will be displayed on the remote controller screen temporarily and then the basic screen will be displayed. To access a mode from the basic screen, refer to the figure below.

When any of the operation buttons is pressed, the backlight will come on and remain lit for about 30 seconds. Be sure to press a button while the backlight is on.

★ The items shown on the remote controller menu are different depending on the connected indoor unit model.
Service Diagnosis

The following message is displayed on the screen when an error (or a warning) occurs during operation. Check the error code and take the corrective action specified for the particular model.

![Diagram of control panel]

Operation

1. If an error occurs, either one of the following items will flash in the basic screen.

 Error: Push Menu button
 * The Operation lamp will flash.
 * For Simple display, the message is not displayed, and only the Operation lamp flashes.

 Warning: Push Menu button
 * The Operation lamp will not flash.
 * For Simple display, the message is not displayed, and the Operation lamp does not flash, either.

2. Press **Menu/OK button**.

 * The error code will flash and the service contact and model name or code may be displayed.
 * Notify your Daikin dealer of the Error code and model name or code.
3.2 Wireless Remote Controller Kit (BRC082A41W, BRC082A42W(S))

The following modes can be selected by using INSPECTION/TEST OPERATION button on the remote controller.

- Indoor unit settings can be made.
 - Filter cleaning sign time
 - Others

- Service mode
 - Press INSPECTION/TEST OPERATION button for more than 4 seconds.

- Normal mode
 - Press INSPECTION/TEST OPERATION button once.

- Test operation mode
 - Press ON/OFF button within 10 seconds to start test operation. Thermostat is forcibly turned on. Test operation will stop automatically after 15~30 minutes.

- Inspection mode
 - Press INSPECTION/TEST OPERATION button once.

- Service data can be obtained.
 - Error code history
 - Temperature data of various sections

- Service settings can be made.
 - Forced fan ON
 - Airflow rate setting

- Field setting mode
 - Press INSPECTION/TEST OPERATION button once.

- After 60 seconds
 - Press INSPECTION/TEST OPERATION button once.

To find the error code, proceed as follows:

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Press INSPECTION/TEST OPERATION button to enter the inspection mode. Then the figure 0 blinks on the UNIT No. display.</td>
</tr>
</tbody>
</table>
Step 2
Press **UP** or **DOWN** button and change the UNIT No. until the indoor unit starts to beep.

<table>
<thead>
<tr>
<th>If you hear...</th>
<th>Then...</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 short beeps</td>
<td>Follow all steps below.</td>
</tr>
<tr>
<td>1 short beep</td>
<td>Follow steps 3 and 4. Continue the operation in step 4 until you hear a long beep. This long beep indicates that the error code is confirmed.</td>
</tr>
<tr>
<td>1 long beep</td>
<td>There is no abnormality.</td>
</tr>
</tbody>
</table>

Step 3
Press **OPERATION MODE SELECTOR** button. The left \(\circ \) (upper digit) indication of the error code blinks.

(R24051)
4. Press **UP** or **DOWN** button to change the error code upper digit until the indoor unit beeps.

If you hear... Then...

2 short beeps The upper digit matches.
1 short beep No digits match.
1 long beep Both upper and lower digits match.

5. Press **OPERATION MODE SELECTOR** button. The right 0 (lower digit) indication of the error code blinks.
Step 6
Press **UP** or **DOWN** button and change the error code lower digit until the indoor unit generates long beep.

![Remote Control Diagram](image1.png)

<table>
<thead>
<tr>
<th>If you hear...</th>
<th>Then...</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 short beeps</td>
<td>No digits match.</td>
</tr>
<tr>
<td>1 long beep</td>
<td>Both upper and lower digits match.</td>
</tr>
</tbody>
</table>

Step 7
Press **OPERATION MODE SELECTOR** button to return to the normal mode. If you do not press any button for 1 minute, the remote controller automatically returns to the normal mode.

![Remote Control Diagram](image2.png)
4. Troubleshooting

4.1 Error Codes and Description

<table>
<thead>
<tr>
<th>System</th>
<th>Error Codes</th>
<th>Description</th>
<th>Reference Page</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>U2</td>
<td>Low-voltage detection or over-voltage detection</td>
<td>74</td>
</tr>
<tr>
<td></td>
<td>U4</td>
<td>Signal transmission error (between indoor unit and outdoor unit)</td>
<td>76</td>
</tr>
<tr>
<td></td>
<td>U8</td>
<td>Mismatching of indoor unit and outdoor unit</td>
<td>78</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Indoor Unit</th>
<th>Error Codes</th>
<th>Description</th>
<th>Reference Page</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>R1</td>
<td>Indoor unit PCB abnormality</td>
<td>64</td>
</tr>
<tr>
<td></td>
<td>R3</td>
<td>Drain level control system abnormality</td>
<td>65</td>
</tr>
<tr>
<td></td>
<td>R6</td>
<td>Indoor fan motor (DC motor) or related abnormality</td>
<td>66</td>
</tr>
<tr>
<td></td>
<td>RF</td>
<td>Humidifier or Related abnormality</td>
<td>68</td>
</tr>
<tr>
<td></td>
<td>C4</td>
<td>Indoor heat exchanger thermistor 1 or related abnormality</td>
<td>69</td>
</tr>
<tr>
<td></td>
<td>C5</td>
<td>Indoor heat exchanger thermistor 2 or related abnormality</td>
<td>69</td>
</tr>
<tr>
<td></td>
<td>C9</td>
<td>Room temperature thermistor or related abnormality</td>
<td>69</td>
</tr>
<tr>
<td></td>
<td>CE</td>
<td>Presence sensor or floor sensor abnormality</td>
<td>70</td>
</tr>
<tr>
<td></td>
<td>CJ</td>
<td>Remote controller thermistor abnormality</td>
<td>71</td>
</tr>
<tr>
<td></td>
<td>U5</td>
<td>Signal transmission error (between indoor unit and outdoor unit)</td>
<td>72</td>
</tr>
<tr>
<td></td>
<td>U8</td>
<td>Signal transmission error (between MAIN remote controller and SUB remote controller)</td>
<td>73</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Outdoor Unit</th>
<th>Error Codes</th>
<th>Description</th>
<th>Reference Page</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>E1</td>
<td>Outdoor unit PCB abnormality</td>
<td>79</td>
</tr>
<tr>
<td></td>
<td>E5★</td>
<td>OL activation (compressor overload)</td>
<td>80</td>
</tr>
<tr>
<td></td>
<td>E6★</td>
<td>Compressor lock</td>
<td>82</td>
</tr>
<tr>
<td></td>
<td>E7★</td>
<td>DC fan lock (outdoor fan motor)</td>
<td>83</td>
</tr>
<tr>
<td></td>
<td>E8</td>
<td>Input overcurrent detection</td>
<td>84</td>
</tr>
<tr>
<td></td>
<td>E9</td>
<td>Four way valve abnormality</td>
<td>85</td>
</tr>
<tr>
<td></td>
<td>F3</td>
<td>Discharge pipe temperature control</td>
<td>87</td>
</tr>
<tr>
<td></td>
<td>F6</td>
<td>High pressure control in cooling</td>
<td>88</td>
</tr>
<tr>
<td></td>
<td>F8</td>
<td>System shutdown due to compressor internal temperature abnormality</td>
<td>90</td>
</tr>
<tr>
<td></td>
<td>H0</td>
<td>Compressor system sensor abnormality</td>
<td>91</td>
</tr>
<tr>
<td></td>
<td>H9</td>
<td>Position sensor abnormality</td>
<td>92</td>
</tr>
<tr>
<td></td>
<td>J3★</td>
<td>Outdoor temperature thermistor or related abnormality</td>
<td>94</td>
</tr>
<tr>
<td></td>
<td>J6</td>
<td>Outdoor heat exchanger thermistor or related abnormality</td>
<td>94</td>
</tr>
<tr>
<td></td>
<td>L3</td>
<td>Electrical box temperature rise</td>
<td>96</td>
</tr>
<tr>
<td></td>
<td>L4</td>
<td>Radiation fin temperature rise</td>
<td>97</td>
</tr>
<tr>
<td></td>
<td>L5★</td>
<td>Output overcurrent detection</td>
<td>98</td>
</tr>
<tr>
<td></td>
<td>P4</td>
<td>Radiation fin thermistor or related abnormality</td>
<td>94</td>
</tr>
</tbody>
</table>

★: Displayed only when system-down occurs.
4.2 Indoor Unit PCB Abnormality

<table>
<thead>
<tr>
<th>Error Code</th>
<th>Error Decision Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>The data from the EEPROM is not received correctly.</td>
</tr>
</tbody>
</table>

Method of Error Detection
The system checks the data from EEPROM.

Supposed Causes
- Defective indoor unit PCB
- External factor (noise etc.)

Troubleshooting

Caution
Be sure to turn off the power switch before connecting or disconnecting connectors, or parts may be damaged.

1. Turn off the power. Then, turn on the power to restart the system.
2. **Normal?**
 - **YES**
 - External factor other than malfunction (for example, noise etc.)
 - **NO**
 - Replace the indoor unit PCB (control PCB).

(R22247)
4.3 Drain Level Control System Abnormality

Error Code

Method of Error Detection
The float switch detects error.

Error Decision Conditions
The water level reaches its upper limit and the float switch turns OFF.

Supposed Causes
- Defective drain pump
- Improper drain piping work
- Clogged drain piping
- Defective float switch
- Defective indoor unit PCB
- Defective connector X15A on indoor unit PCB

Troubleshooting

Caution
Be sure to turn off the power switch before connecting or disconnecting connectors, or parts may be damaged.

Is the drain pump connected to the indoor unit PCB?

YES

Connect the drain pump.

NO

Does the drain pump work after the power supply is on?

YES

Replace the indoor unit PCB (control PCB).

NO

Is the drain water level abnormally high?

YES

There is a drain system abnormality.

NO

Is the float switch connected to X15A?

YES

Connect the float switch.

NO

Remove the float switch from X15A, short circuit X15A, and restart operation.

Does R3 appear on the remote controller display?

YES

Replace the indoor unit PCB (control PCB).

NO

Replace the float switch.

(R23963)
4.4 Indoor Fan Motor (DC Motor) or Related Abnormality

<table>
<thead>
<tr>
<th>Error Code</th>
<th>A6</th>
</tr>
</thead>
</table>

Method of Error Detection
The rotation speed detected by the Hall IC during fan motor operation determines abnormal fan motor operation.

Error Decision Conditions
The fan motor is not revved up.

Supposed Causes
- Layer short inside the fan motor winding
- Breaking of wire inside the fan motor
- Breaking of the fan motor lead wires
- Defective indoor unit PCB
Be sure to turn off the power switch before connecting or disconnecting connectors, or parts may be damaged.

Caution

Check No. 02
Refer to P. 101

Check the power supply voltage.

- **Is the voltage fluctuation within \(\pm 10\% \) from the rated value?**
 - **NO**
 - **YES**

 - **Turn off the power supply.** (Unplug the power cable or turn the breaker off.)
 - **Check the connector for connection.**

 - **OK?**
 - **NO**
 - **YES**

 - **Correct the connection.**
 - **Foreign matters in or around the fan?**
 - **YES**
 - **Remove the foreign matters.**
 - **NO**

 - **Rotate the fan by hand.**
 - **Does the fan rotate smoothly?**
 - **NO**
 - **YES**

 - **Replace the indoor fan motor.**

 - **Turn on the power on again and start operation.**

 - **Check No. 02**
 - **Check the output of the fan motor connector.**

 - **Motor power supply voltage 290 ~ 330 VDC or more?**
 - **NO**
 - **YES**

 - **Replace the indoor unit PCB (control PCB).**

 - **Motor control voltage 15 VDC generated?**
 - **NO**
 - **YES**

 - **Replace the indoor unit PCB (control PCB).**

 - **Rotation command voltage 0 ~ 2 VDC when stopped, 2 ~ 5 VDC when operated**
 - **NO**
 - **YES**

 - **Replace the indoor fan motor.**

Note: The motor may break when the motor connector is disconnected while the power is turned on. (Be sure to turn off the power before reconnecting the connector.)

- **Correct the power supply.**

(R24054)
4.5 Humidifier or Related Abnormality

Error Code

Method of Error Detection
Water leakage from humidifier(s) is detected based on the float switch ON/OFF changeover while the system is not operating.

Error Decision Conditions
The float switch changes from ON to OFF while the system is OFF.

Supposed Causes
- Defective float switch
- Error in water drain system of humidifier(s)
- Clogged electric expansion value in humidifier(s)
- Defective indoor unit PCB

Troubleshooting

Caution: Be sure to turn off the power switch before connecting or disconnecting connectors, or parts may be damaged.

Note: The system continues to operate with the thermostat OFF even while the error code is displayed.
4.6 Thermistor or Related Abnormality

Error Code
C4, C5, C9

Method of Error Detection
The temperatures detected by the thermistors determine thermistor errors.

Error Decision Conditions
The thermistor is disconnected or shorted while the unit is running.

Supposed Causes
- Disconnection of connector
- Defective thermistor(s)
- Breaking of wires
- Defective indoor unit PCB

Troubleshooting
If the cause of the problem is related to the thermistors, the thermistors should be checked prior to changing the indoor unit PCB.

To check the thermistors, proceed as follows:

<table>
<thead>
<tr>
<th>Step</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Disconnect the thermistor from the indoor unit PCB.</td>
</tr>
<tr>
<td>2</td>
<td>Read the temperature and the resistance value.</td>
</tr>
<tr>
<td>3</td>
<td>Check if the measured values correspond with the values in the table of thermistor resistance check.</td>
</tr>
</tbody>
</table>

Caution
Be sure to turn off the power switch before connecting or disconnecting connectors, or parts may be damaged.

- Check the connection of connectors.
- Normal? NO Correct the connection.
- YES
- Check No. 01
- Check the thermistor resistance value.
- Normal? NO Replace the defective thermistor(s).
- YES Replace the indoor unit PCB (control PCB).

Note: When replacing the defective thermistor(s), replace the thermistors as ASSY.

C4 : Indoor heat exchanger thermistor 1 (liquid pipe) (R2T)
C5 : Indoor heat exchanger thermistor 2 (R3T)
C9 : Room temperature thermistor (R1T)
4.7 Presence Sensor or Floor Sensor Abnormality

<table>
<thead>
<tr>
<th>Error Code</th>
<th>CE</th>
</tr>
</thead>
</table>

Method of Error Detection
The system detects abnormality by the output signal from the sensor(s).

Error Decision Conditions
The sensor is disconnected or shorted while the unit is running.

Supposed Causes
- Disconnection of connector
- Breaking of wires
- Defective sensor(s)
- Defective sensor kit PCB

Troubleshooting
If the cause of the problem is related to the sensors, the sensors should be checked prior to changing the indoor unit PCB.

Caution
Be sure to turn off the power switch before connecting or disconnecting connectors, or parts may be damaged.

1. Check the connection of connector X81A on indoor unit PCB.
 - Normal?
 - NO: Correct the connection.
 - YES: Check the connection of connectors on the sensor kit.
 - Normal?
 - NO: Connect the connectors properly.
 - YES: Turn off the power. Then, turn on the power to restart the system.

2. CE error displayed again?
 - NO: Normal
 - YES: Replace the sensor kit.

Note: When replacing the defective sensor(s), replace the sensor kit as ASSY.
4.8 Remote Controller Thermistor Abnormality

Error Code: CJ

Method of Error Detection:
Even if remote controller thermistor is faulty, system is possible to operate by system thermistor. Malfunction detection is carried out by the temperature detected by the remote controller thermistor.

Error Decision Conditions:
The remote controller thermistor is disconnected or shorted while the unit is running.

Supposed Causes:
- Defective room temperature thermistor in the wired remote controller
- Defective wired remote controller PCB
- External factor such as noise

Troubleshooting:

Caution:
Be sure to turn off the power switch before connecting or disconnecting connectors, or parts may be damaged.

Delete the record of error codes. (Refer to Note)

Is CJ displayed on the remote controller again?

NO

External factor other than equipment malfunction. (for example, noise etc.)

YES

Replace the remote controller.

(R23951)

Note:
To delete the record of error codes, press ON/OFF button for 4 seconds or more while the error code is displayed in the inspection mode.
4.9 Signal Transmission Error (Between Indoor Unit and Remote Controller)

Error Code

U5

Method of Error Detection

In case of controlling 1 indoor unit with 2 remote controllers, check the system using microcomputer if signal transmission between indoor unit and remote controller (main and sub) is normal.

Error Decision Conditions

Normal transmission does not continue for specified period.

Supposed Causes

- Connection of 2 main remote controllers (when using 2 remote controllers)
- Defective indoor unit PCB
- Defective remote controller
- Transmission error caused by noise

Troubleshooting

Be sure to turn off the power switch before connecting or disconnecting connectors, or parts may be damaged.

![Flowchart diagram]

Note: For the way to change MAIN/SUB setting of remote controllers, refer to pages 122 and 123.
4.10 Signal Transmission Error (Between MAIN Remote Controller and SUB Remote Controller)

Error Code: U8

Method of Error Detection
In case of controlling 1 indoor unit with 2 remote controllers, check the system using microcomputer if signal transmission between MAIN remote controller and SUB remote controller is normal.

Error Decision Conditions
Normal transmission does not continue for specified period.

Supposed Causes
- Remote controller is set to SUB when using 1 remote controller
- Connection of 2 sub remote controllers (when using 2 remote controllers)
- Defective remote controller PCB

Troubleshooting

![Diagram]

Caution: Be sure to turn off the power switch before connecting or disconnecting connectors, or parts may be damaged.

- Using 2 remote controllers for 1 indoor unit?
 - NO
 - Is the remote controller set to MAIN?
 - NO: Set the remote controller to MAIN; turn the power supply off and then back on.
 - YES: Turn the power off and then back on. If a malfunction occurs, replace the remote controller.
 - YES
 - Are both remote controllers set to SUB?
 - NO: Turn the power off and then back on. If a malfunction occurs, replace the remote controller.
 - YES: Set one remote controller to MAIN; turn the power supply off once and then back on.

Note: For the way to change MAIN/SUB setting of remote controllers, refer to pages 122 and 123.
4.11 Low-voltage Detection or Over-voltage Detection

<table>
<thead>
<tr>
<th>Error Code</th>
<th>U2</th>
</tr>
</thead>
</table>

Method of Error Detection

Low-voltage detection:
An abnormal voltage drop is detected by the DC voltage detection circuit.

Over-voltage detection:
An abnormal voltage rise is detected by the over-voltage detection circuit.

Error Decision Conditions

Low-voltage detection:
- The voltage detected by the DC voltage detection circuit is below 180 ~ 196 V (depending on the model).
- The compressor stops if the error occurs, and restarts automatically after 3-minute standby.

Over-voltage detection:
- An over-voltage signal is fed from the over-voltage detection circuit to the microcomputer (over 458 ~ 500 V, depending on the model).
- The compressor stops if the error occurs, and restarts automatically after 3-minute standby.

Supposed Causes

- Power supply voltage out of specification
- Defective DC voltage detection circuit
- Defective over-voltage detection circuit
- Defective PAM control part
- Disconnection of compressor harness
- Short circuit inside the fan motor winding
- Noise
- Momentary drop of voltage
- Momentary power failure
- Defective outdoor unit PCB
Troubleshooting

Be sure to turn off the power switch before connecting or disconnecting connectors, or parts may be damaged.

Check the power supply voltage.

Is the voltage fluctuation within ±10% from the rated value?

NO Correct the power supply.

YES Check the connection of the compressor harness.

Loose or disconnected?

YES Reconnect the harness.

NO

Does the outdoor fan rotate smoothly?

NO Replace the outdoor fan motor and the outdoor unit PCB (main PCB).

YES

(Precaution before turning on the power again)
Make sure the power has been off for at least 30 seconds.

Turn on the power. System restarted? (Repeat a few times.)

YES Disturbance factors
* Noise
* Power supply distortion

Check for such factors for a long term.

NO

Replace the outdoor unit PCB (main PCB).

(R22445)
4.12 Signal Transmission Error (Between Indoor Unit and Outdoor Unit)

<table>
<thead>
<tr>
<th>Error Code</th>
<th>U4</th>
</tr>
</thead>
</table>

Method of Error Detection
The signal transmission data from the outdoor unit is checked whether it is normal.

Error Decision Conditions
The data sent from the outdoor unit cannot be received normally, or the content of the data is abnormal.

Supposed Causes
- Power supply voltage out of specification
- Reduction of power supply voltage
- Wiring error
- Breaking of the connecting wires between the indoor and outdoor units (wire No. 3)
- Defective outdoor unit PCB
- Short circuit inside the fan motor winding
- Defective indoor unit PCB
- Disturbed power supply waveform
Be sure to turn off the power switch before connecting or disconnecting connectors, or parts may be damaged.

Check No.11
Refer to P.101

Check the power supply voltage.

Is the voltage fluctuation within ±10% from the rated value?

NO
Correct the power supply.

YES

Check the connection wires between the indoor unit and the outdoor unit.

Is there any wiring error?

YES
Correct the connection wires between the indoor unit and the outdoor unit.

NO

Check the voltage of the connection wires on the indoor terminal block between No. 1 and No. 3, and between No. 2 and No. 3.

Properly insulated?

NO
Replace the connection wires between the indoor unit and outdoor unit.

YES

Check the LED A on the outdoor unit PCB.

Is LED A blinking?

Continuously ON or OFF
Replace the outdoor unit PCB (main PCB).

Blink

Rotate the outdoor fan manually. Does the outdoor fan rotate smoothly?

NO
Replace the outdoor fan motor and the outdoor unit PCB (main PCB).

YES

Check No.11
Check the power supply waveform.

Is there any disturbance?

NO
Replace the indoor unit PCB (control PCB).

YES
Locate and eliminate the cause of the disturbance of the power supply waveform.

(R24612)
4.13 Mismatching of Indoor Unit and Outdoor Unit

Error Code: UR

Error Decision Conditions

- Improper combination of indoor and outdoor units

Supposed Causes

- Defective indoor unit PCB
- Indoor-outdoor unit transmission wiring error
- Defective optional unit(s) wirings
- Improper power supply wiring of indoor unit
- Improper wiring of connecting wires between indoor/outdoor units

Troubleshooting

Be sure to turn off the power switch before connecting or disconnecting connectors, or parts may be damaged.

- Is the combination of indoor/outdoor units correct?
 - NO: Connect the indoor/outdoor units correctly.
 - YES:
 - Do the service monitors of all the indoor units blink?
 - Blink:
 - Continuously ON or OFF: Are the wirings between indoor unit and outdoor unit correctly connected?
 - NO: Connect the wirings correctly.
 - YES:
 - Is the optional units power supply connected from the indoor unit terminal block No.1 and No.2?
 - NO: Connect the wirings correctly.
 - YES:
 - Is the voltage between No.1 and No.2 on the indoor unit terminal block 208 - 230 VAC?
 - NO: Could be incorrect wiring. Check again.
 - YES: Check the power supply system inside the indoor unit.
 - Are the wirings between indoor unit and outdoor unit correctly connected?
 - NO: Connect the wirings correctly.
 - YES:
 - Does the system conduct normal operation?
 - NO: Replace the indoor unit PCB (control PCB).
 - YES: Normal

(R24372)
4.14 Outdoor Unit PCB Abnormality

Error Code

- E1

Method of Error Detection
- The system checks if the microprocessor is working in order.
- The system checks if the zero-cross signal comes in properly.

Error Decision Conditions
- The microprocessor program runs out of control.
- The zero-cross signal is not detected.

Supposed Causes
- Defective outdoor unit PCB
- Noise
- Momentary drop of voltage
- Momentary power failure

Troubleshooting

Be sure to turn off the power switch before connecting or disconnecting connectors, or parts may be damaged.

![Troubleshooting Diagram]

- Before you check the LED A, cancel the standby electricity saving function by starting fan operation with the remote controller.
- Wait at least for 7 sec. after turning on the power.

(R21201)
4.15 OL Activation (Compressor Overload)

<table>
<thead>
<tr>
<th>Error Code</th>
<th>E5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Method of Error Detection</td>
<td>A compressor overload is detected through compressor OL.</td>
</tr>
<tr>
<td>Error Decision Conditions</td>
<td></td>
</tr>
<tr>
<td>- If the error repeats, the system is shut down.</td>
<td></td>
</tr>
<tr>
<td>- Reset condition: Continuous run for about 60 minutes without any other error</td>
<td></td>
</tr>
<tr>
<td>Supposed Causes</td>
<td></td>
</tr>
<tr>
<td>- Disconnection of discharge pipe thermistor</td>
<td></td>
</tr>
<tr>
<td>- Defective discharge pipe thermistor</td>
<td></td>
</tr>
<tr>
<td>- Disconnection of connector S40</td>
<td></td>
</tr>
<tr>
<td>- Disconnection of 2 terminals of OL (Q1L)</td>
<td></td>
</tr>
<tr>
<td>- Defective OL (Q1L)</td>
<td></td>
</tr>
<tr>
<td>- Broken OL harness</td>
<td></td>
</tr>
<tr>
<td>- Defective electronic expansion valve or coil</td>
<td></td>
</tr>
<tr>
<td>- Defective four way valve or coil</td>
<td></td>
</tr>
<tr>
<td>- Defective outdoor unit PCB</td>
<td></td>
</tr>
<tr>
<td>- Refrigerant shortage</td>
<td></td>
</tr>
<tr>
<td>- Water mixed in refrigerant</td>
<td></td>
</tr>
<tr>
<td>- Defective stop valve</td>
<td></td>
</tr>
</tbody>
</table>
Troubleshooting

Check No. 01
Refer to P. 100
Check the discharge pipe thermistor.

Check No. 12
Refer to P. 102
Check the electronic expansion valve.

Check No. 13
Refer to P. 103
Check the four way valve.

Check No. 14
Refer to P. 103
Check the refrigerant line.

Caution
Be sure to turn off the power switch before connecting or disconnecting connectors, or parts may be damaged.

Disconnect the connector S40 from the PCB.

Check the resistance between the 2 terminals on connector S40.

Check the discharge pipe thermistor.

Check the four way valve.

Check the refrigerant line.

Note:
OL (Q1L) activating temperature: 130°C (266°F)
OL (Q1L) recovery temperature: 95°C (203°F)
4.16 Compressor Lock

Error Code

\[E6 \]

Method of Error Detection

A compressor lock is detected by the current waveform generated when applying high-frequency voltage to the motor.

Error Decision Conditions

- If the error repeats, the system is shut down.
- Reset condition: Continuous run for about 11 minutes without any other error

Supposed Causes

- Closed stop valve
- Compressor locked
- Disconnection of compressor harness

Troubleshooting

Check No.12
Refer to P.102

Check No.15
Refer to P.104

![Flowchart]

Caution

Be sure to turn off the power switch before connecting or disconnecting connectors, or parts may be damaged.

(Precaution before turning on the power again) Make sure the power has been off for at least 30 seconds.

- Stop valve closed?
 - YES
 - Open the stop valve.
 - NO
 - Turn off the power. Disconnect the harnesses U, V, and W.

- Check No.15
 - Check with the inverter analyzer.
 - Inverter analyzer: RSUK0917C

- Any LED off?
 - NO
 - Correct the power supply or replace the outdoor unit PCB (main PCB).
 - YES
 - Turn off the power and reconnect the harnesses. Turn on the power again and restart the system.

- Emergency stop without compressor running?
 - YES
 - Replace the compressor.
 - NO
 - System shut down after errors repeated several times?
 - NO
 - Check the electronic expansion valve coil. Go to Check No. 12.
 - YES
 - Replace the compressor.
4.17 DC Fan Lock (Outdoor Fan Motor)

<table>
<thead>
<tr>
<th>Error Code</th>
<th>E7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Method of Error Detection</td>
<td>An error is determined with the high-voltage fan motor rotation speed detected by the Hall IC.</td>
</tr>
<tr>
<td>Error Decision Conditions</td>
<td>The fan does not start in 15 ~ 30 seconds even when the fan motor is running.
If the error repeats, the system is shut down.
Reset condition: Continuous run for about 11 minutes without any other error</td>
</tr>
<tr>
<td>Supposed Causes</td>
<td>Disconnection of the fan motor
Foreign matter stuck in the fan
Defective fan motor
Defective outdoor unit PCB</td>
</tr>
</tbody>
</table>

Troubleshooting

Caution
Be sure to turn off the power switch before connecting or disconnecting connectors, or parts may be damaged.

![Troubleshooting Diagram](image)

Check No.16
Refer to P.106

1. **Fan motor connector disconnected?**
 - YES: Turn off the power and reconnect the connector.
 - NO: Go to the next step.

2. **Foreign matters in or around the fan?**
 - YES: Remove the foreign matters.
 - NO: Go to the next step.

3. **Turn on the power.**

4. **Rotate the fan.**

5. **Fan rotates smoothly?**
 - NO: Replace the outdoor fan motor.
 - YES: Check No. 16
 - Check the rotation pulse input on the outdoor unit PCB (main PCB).

6. **Pulse signal generated?**
 - NO: Replace the outdoor fan motor.
 - YES: Replace the outdoor unit PCB (main PCB).

(R20416)
4.18 Input Overcurrent Detection

Error Code

E8

Method of Error Detection

An input overcurrent is detected by checking the input current value with the compressor running.

Error Decision Conditions

The current exceeds about 12.0 ~ 12.5 A (depending on the model) for 2.5 seconds with the compressor running.
(The upper limit of the current decreases when the outdoor temperature exceeds a certain level.)

Supposed Causes

- Outdoor temperature is out of operation range.
- Defective compressor
- Defective power module
- Defective outdoor unit PCB
- Short circuit

Troubleshooting

Be sure to turn off the power switch before connecting or disconnecting connectors, or parts may be damaged.

* An input overcurrent may result from wrong internal wiring. If the system is interrupted by an input overcurrent after the wires have been disconnected and reconnected for part replacement, check the wiring again.

Check No. 15
Refer to P.104

Check No. 17
Refer to P.107

Check No. 18
Refer to P.107

Check No. 17
Check the installation condition.

- Start operation and measure the input current.

- **Input current flowing above its stop level?**
 - **NO**
 - Turn off the power and disconnect the harnesses U, V, and W.
 - **YES**
 - **Check No. 15**
 - Check with the inverter analyzer.

- **Any LED off?**
 - **YES**
 - Correct the power supply or replace the outdoor unit PCB (main PCB).
 - **NO**
 - Turn off the power, and reconnect the harnesses. Turn on the power again and start operation.

- **Check No. 18**
 - Check the discharge pressure.

(R21863)
4.19 Four Way Valve Abnormality

<table>
<thead>
<tr>
<th>Error Code</th>
<th>EA</th>
</tr>
</thead>
</table>

Method of Error Detection
The room temperature thermistor and the indoor heat exchanger thermistor are checked if they function within their normal ranges in each operation mode.

Error Decision Conditions
The following condition continues over 10 minutes after operating for 5 minutes.

- **Cooling/Dry**
 \[A - B < -5^\circ C \quad (A - B < -9^\circ F) \]

- **Heating**
 \[B - A < -5^\circ C \quad (B - A < -9^\circ F) \]

 \[\text{A: Room thermistor temperature} \]
 \[\text{B: Indoor heat exchanger temperature} \]

- If the error repeats, the system is shut down.
- Reset condition: Continuous run for about 60 minutes without any other error

Supposed Causes
- Disconnection of four way valve coil
- Defective four way valve, coil, or harness
- Defective outdoor unit PCB
- Defective thermistor
- Refrigerant shortage
- Water mixed in refrigerant
- Defective stop valve
Troubleshooting

Check No.01 Refer to P.100

Check No.13 Refer to P.103

Check No.14 Refer to P.103

Be sure to turn off the power switch before connecting or disconnecting connectors, or parts may be damaged.

Four way valve coil disconnected (loose)?

YES → Correct the four way valve coil.

NO → Harness disconnected?

YES → Reconnect the harness.

NO → Check the continuity of the four way valve coil and harness.

Disconnect the harness from the connector.

Resistance between harnesses about 1000 ~ 2000 Ω?

NO → Replace the four way valve coil.

YES → Check No. 13

Check the four way valve switching output.

NG → Replace the outdoor unit PCB (main PCB).

OK → Any thermistor disconnected?

YES → Reconnect the thermistor(s).

NO → Check No. 01

Check the thermistors.

NG → Replace the defective thermistor(s).

OK → Check No. 14

Check the refrigerant line.

NG → Refer to the refrigerant line check procedure.

OK → Replace the four way valve (defective or dust-clogged).

(R20405)

Caution

Four way valve coil disconnected (loose)?

NO → Harness disconnected?

YES → Reconnect the harness.

NO → Check the continuity of the four way valve coil and harness.

Disconnect the harness from the connector.

Resistance between harnesses about 1000 ~ 2000 Ω?

NO → Replace the four way valve coil.

YES → Check No. 13

Check the four way valve switching output.

NG → Replace the outdoor unit PCB (main PCB).

OK → Any thermistor disconnected?

YES → Reconnect the thermistor(s).

NO → Check No. 01

Check the thermistors.

NG → Replace the defective thermistor(s).

OK → Check No. 14

Check the refrigerant line.

NG → Refer to the refrigerant line check procedure.

OK → Replace the four way valve (defective or dust-clogged).

(R20405)
4.20 Discharge Pipe Temperature Control

Error Code
F3

Method of Error Detection
An error is determined with the temperature detected by the discharge pipe thermistor.

Error Decision Conditions
- If the temperature detected by the discharge pipe thermistor rises above A, the compressor stops.
- The error is cleared when the discharge pipe temperature has dropped below B.

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>°C</td>
<td>°F</td>
<td>°C</td>
</tr>
<tr>
<td>09/12 class</td>
<td>110</td>
<td>230</td>
</tr>
<tr>
<td>15/18 class</td>
<td>110</td>
<td>230</td>
</tr>
</tbody>
</table>

- If the frequency drops, the temperature is lowered in compensation.
- If the error repeats, the system is shut down.
- Reset condition: Continuous run for about 60 minutes without any other error

Supposed Causes
- Defective discharge pipe thermistor
 (Defective outdoor heat exchanger thermistor or outdoor temperature thermistor)
- Defective electronic expansion valve or coil
- Refrigerant shortage
- Defective four way valve
- Water mixed in refrigerant
- Defective stop valve
- Defective outdoor unit PCB

Caution
Be sure to turn off the power switch before connecting or disconnecting connectors, or parts may be damaged.

Troubleshooting

Check No.01
Refer to P.100
Check the thermistors.
- NG: Replace the defective thermistor(s).
- OK: Go to Check No.12

Check No.12
Refer to P.102
Check the electronic expansion valve.
- NG: Replace the electronic expansion valve or the coil.
- OK: Go to Check No.14

Check No.14
Refer to P.103
Check the refrigerant line.
- NG: Refer to the refrigerant line check procedure.
- OK: Replace the outdoor unit PCB (main PCB).
4.21 High Pressure Control in Cooling

Error Code: F6

Method of Error Detection: High-pressure control (operation halt, frequency drop, etc.) is activated in cooling operation if the temperature sensed by the outdoor heat exchanger thermistor exceeds the limit.

Error Decision Conditions: The temperature sensed by the outdoor heat exchanger thermistor rise above 57.5 ~ 61°C (135.5 ~ 141.8°F) (depending on the model).

Supposed Causes:
- Installation space not large enough
- Dirty outdoor heat exchanger
- Defective outdoor fan motor
- Defective stop valve
- Defective electronic expansion valve or coil
- Defective outdoor heat exchanger thermistor
- Defective outdoor unit PCB
Troubleshooting

Check No.01
Refer to P.100

Caution
Be sure to turn off the power switch before connecting or disconnecting connectors, or parts may be damaged.

Check the installation space.

Check No.12
Refer to P.102

Check No.17
Refer to P.107

Check No.18
Refer to P.107

Check No.19
Refer to P.108

Check No.17
Check the installation condition.

NG

OK

Change the installation location or direction. Clean the outdoor heat exchanger.

OK

Check No.19
Check the outdoor fan.

NG

OK

Replace the outdoor fan motor. Reconnect the connector or fan motor lead wires.

OK

Check No.18
Check the discharge pressure.

NG

Replace the stop valve.

OK

Check No.12
Check the electronic expansion valve.

NG

Replace the electronic expansion valve or the coil. Replace the outdoor unit PCB (main PCB).

OK

Check No.01
Check the outdoor heat exchanger thermistor.

NG

Replace the outdoor heat exchanger thermistor.

OK

OK
4.22 System Shutdown due to Compressor Internal Temperature Abnormality

Error Code

F8

Method of Error Detection

Operation is halted when the temperature detected by the discharge pipe thermistor exceeds the determined limit.

Error Decision Conditions

Temperature exceeds the detection threshold of 127.5°C during forced cooling operation.

Supposed Causes

- Abnormal operation due to air intrusion
- Defective discharge pipe thermistor

Troubleshooting

![Check No. 01]

Refer to P.100

Be sure to turn off the power switch before connecting or disconnecting connectors, or parts may be damaged.

1. Abnormal deformation of piping in the outdoor unit
 - YES: Replace the outdoor unit.
 - NO: Proceed to the next step.

2. Check No. 01: Check the discharge pipe thermistor
 - NG: Replace both the discharge pipe thermistor and the outdoor unit PCB (main PCB).
 - OK: Replace the outdoor unit.

* Replace the unit as directed in the installation manual, making sure that air does not intrude into the refrigerant pipings.
4.23 Compressor System Sensor Abnormality

<table>
<thead>
<tr>
<th>Error Code</th>
<th>H0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Method of Error Detection</td>
<td>The system checks the DC current before the compressor starts.</td>
</tr>
</tbody>
</table>
| Error Decision Conditions | - The voltage converted from the DC current before compressor start-up is out of the range 0.5 ~ 4.5 V.
- The DC voltage before compressor start-up is below 50 V. |

<table>
<thead>
<tr>
<th>Supposed Causes</th>
</tr>
</thead>
</table>
| - Broken or disconnected harness
- Defective outdoor unit PCB |

Troubleshooting

⚠️ **Caution**
Be sure to turn off the power switch before connecting or disconnecting connectors, or parts may be damaged.

Check the (relay) harness for the compressor.

Is the harness broken?

YES
Replace the harness.

NO
Turn off the power. Then, turn on the power to restart the system.

Restart operation and error displayed again?

NO
Not a malfunction. Keep observing.

YES
Replace the outdoor unit PCB (main PCB).

(R24613)
4.24 Position Sensor Abnormality

<table>
<thead>
<tr>
<th>Error Code</th>
<th>H6</th>
</tr>
</thead>
</table>

Method of Error Detection
A compressor start-up failure is detected by checking the compressor running condition through the position detection circuit.

Error Decision Conditions
- If the error repeats, the system is shut down.
- Reset condition: Continuous run for about 11 minutes without any other error

Supposed Causes
- Power supply voltage out of specification
- Disconnection of the compressor harness
- Defective compressor
- Defective outdoor unit PCB
- Start-up failure caused by the closed stop valve
- Input voltage outside the specified range
Troubleshooting

Be sure to turn off the power switch before connecting or disconnecting connectors, or parts may be damaged.

Check No. 15
Turn off the power.
Check the power supply voltage.

Check No. 18
Check the power supply voltage fluctuation within ±10% from the rated value?

Check No. 20
Check the short circuit of the diode bridge.

Check No. 18
Check the discharge pressure.

Check No. 20
Check the short circuit of the diode bridge.

Check the connection.

Electrical components or compressor harnesses connected as specified?

Turn on the power. Check the electrolytic capacitor voltage.

Within 320 ±10% VDC?

Turn off the power. Disconnect the harnesses U, V, and W.

Check No. 15
Check with the inverter analyzer.

Any LED Off?

Replace the outdoor unit PCB (main PCB).

Replace the stop valve.

Replace the outdoor unit PCB (main PCB).

Reconnect the electrical components or compressor harnesses as specified.

Correct the power supply or replace the outdoor unit PCB (main PCB).

* Inverter analyzer: RSUK0917C

(R22764)
4.25 Thermistor or Related Abnormality (Outdoor Unit)

<table>
<thead>
<tr>
<th>Error Code</th>
<th>(\text{H9, J3, J6, P4})</th>
</tr>
</thead>
</table>

Method of Error Detection

This fault is identified based on the thermistor input voltage to the microcomputer. A thermistor fault is identified based on the temperature sensed by each thermistor.

Error Decision Conditions

- The voltage between both ends of the thermistor is either 4.96 V or more, or 0.04 V or less with the power on.
- J3 error is judged if the discharge pipe temperature is lower than the heat exchanger temperature.

Supposed Causes

- Disconnection of the connector for the thermistor
- Defective thermistor(s)
- Defective heat exchanger thermistor in the case of J3 error (outdoor heat exchanger thermistor in cooling operation, or indoor heat exchanger thermistor in heating operation)
- Defective outdoor unit PCB

Troubleshooting

In case of P4

Be sure to turn off the power switch before connecting or disconnecting connectors, or parts may be damaged.

Replace the outdoor unit PCB (main PCB).

P4 : Radiation fin thermistor
Troubleshooting: In case of $H9$, $J3$, $J6$

- **Check No.01**
- Refer to P.100

Caution: Be sure to turn off the power switch before connecting or disconnecting connectors, or parts may be damaged.

1. Turn on the power again.

2. Error displayed again on remote controller? NO: Reconnect the connectors or thermistors. YES: Check No. 01

 - Check the thermistor resistance value.

3. Normal? NO: Replace the defective thermistor(s) of the following thermistors. YES: Check No. 01

 - $J3$ error: the discharge pipe temperature is lower than the heat exchanger temperature.
 - Cooling: Outdoor heat exchanger temperature
 - Heating: Indoor heat exchanger temperature

4. Check No. 01
 - Check the indoor heat exchanger thermistor resistance value in the heating operation.

5. Indoor heat exchanger thermistor functioning? NO: Replace the indoor heat exchanger thermistor. YES: Replace the outdoor unit PCB (main PCB).

$H9$: Outdoor temperature thermistor
$J3$: Discharge pipe thermistor
$J6$: Outdoor heat exchanger thermistor

Note: When replacing the defective thermistor(s), replace the thermistors as ASSY.
4.26 Electrical Box Temperature Rise

Error Code

Method of Error Detection

An electrical box temperature rise is detected by checking the radiation fin thermistor with the compressor off.

Error Decision Conditions

- With the compressor off, the radiation fin temperature is above A.
- The error is cleared when the radiation fin temperature drops below B.
- To cool the electrical components, the outdoor fan starts when the radiation fin temperature rises above C and stops when the radiation fin temperature drops below B.

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>°C</td>
<td>°F</td>
<td>°C</td>
<td>°F</td>
</tr>
<tr>
<td>09/12 class</td>
<td>82</td>
<td>65</td>
<td>70</td>
</tr>
<tr>
<td>15/18 class</td>
<td>90</td>
<td>64</td>
<td>81</td>
</tr>
</tbody>
</table>

Supposed Causes

- Defective outdoor fan motor
- Short circuit
- Defective radiation fin thermistor
- Disconnection of connector
- Defective outdoor unit PCB

Troubleshooting

Be sure to turn off the power switch before connecting or disconnecting connectors, or parts may be damaged.

Turn off the power. Then, turn on the power to restart the system.

Check No. 17
Refer to P.107

Check No. 19
Refer to P.108

Error again or outdoor fan activated?

NO

Check the radiation fin temperature.

Above A?

NO

Replace the outdoor unit PCB (main PCB).

YES

Replace the outdoor unit PCB (main PCB).

Correct the connectors and fan motor lead wire.

Check the installation condition.

Go to Check No. 17.

Clean up the radiation fin.

NO

Check the outdoor fan.

OK

NG

Radiation fin dirty?

YES

Replace the outdoor fan motor.

Correct the connectors and fan motor lead wire.

Replace the outdoor unit PCB (main PCB).

Check the installation condition.

Go to Check No. 17.

Clean up the radiation fin.

(R22998)
4.27 Radiation Fin Temperature Rise

Error Code: L4

Method of Error Detection:
A radiation fin temperature rise is detected by checking the radiation fin thermistor with the compressor on.

Error Decision Conditions:
- If the radiation fin temperature with the compressor on is above A.
- The error is cleared when the radiation fin temperature drops below B.
- If the error repeats, the system is shut down.
- Reset condition: Continuous run for about 60 minutes without any other error

<table>
<thead>
<tr>
<th></th>
<th>°C</th>
<th>°F</th>
</tr>
</thead>
<tbody>
<tr>
<td>09/12 class</td>
<td>99</td>
<td>210.2</td>
</tr>
<tr>
<td>15/18 class</td>
<td>100</td>
<td>212</td>
</tr>
</tbody>
</table>

Supposed Causes:
- Defective outdoor fan motor
- Short circuit
- Defective radiation fin thermistor
- Disconnection of connector
- Defective outdoor unit PCB
- Silicone grease not applied properly on the radiation fin after replacing the outdoor unit PCB

Troubleshooting:

Check No. 17
Refer to P.107

Check No. 19
Refer to P.108

Be sure to turn off the power switch before connecting or disconnecting connectors, or parts may be damaged.

Note: Refer to Silicone Grease on Power Transistor/Diode Bridge on page 126 for details.
4.28 Output Overcurrent Detection

<table>
<thead>
<tr>
<th>Error Code</th>
<th>L5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Method of Error Detection</td>
<td>An output overcurrent is detected by checking the current that flows in the inverter DC section.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Error Decision Conditions</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>■ A position signal error occurs while the compressor is running.</td>
<td></td>
</tr>
<tr>
<td>■ A rotation speed error occurs while the compressor is running.</td>
<td></td>
</tr>
<tr>
<td>■ An output overcurrent signal is fed from the output overcurrent detection circuit to the microcomputer.</td>
<td></td>
</tr>
<tr>
<td>■ If the error repeats, the system is shut down.</td>
<td></td>
</tr>
<tr>
<td>■ Reset condition: Continuous run for about 11 minutes without any other error</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Supposed Causes</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>■ Poor installation condition</td>
<td></td>
</tr>
<tr>
<td>■ Closed stop valve</td>
<td></td>
</tr>
<tr>
<td>■ Defective power module</td>
<td></td>
</tr>
<tr>
<td>■ Wrong internal wiring</td>
<td></td>
</tr>
<tr>
<td>■ Abnormal power supply voltage</td>
<td></td>
</tr>
<tr>
<td>■ Defective outdoor unit PCB</td>
<td></td>
</tr>
<tr>
<td>■ Power supply voltage out of specification</td>
<td></td>
</tr>
<tr>
<td>■ Defective compressor</td>
<td></td>
</tr>
</tbody>
</table>
Troubleshooting

Caution

Be sure to turn off the power switch before connecting or disconnecting connectors, or parts may be damaged.

* An output overcurrent may result from wrong internal wiring. If the system is interrupted by an output overcurrent after the wires have been disconnected and reconnected for part replacement, check the wiring again.

Check No. 15
Check with the inverter analyzer.

Check No. 17
Check the installation condition.

Stop valve fully open?

- **NO**
 - Fully open the stop valve.

- **YES**
 - Turn off the power. Then, turn on the power to restart the system. See if the same error occurs.

- **NO**
 - Monitor the power supply voltage, discharge and suction pressures, and other factors for a long term.

 Possible causes
 - Momentary drop of power supply voltage
 - Compressor overload
 - Short circuit

 - Not a malfunction. Keep observing.
 - Check the connectors and other components.

 Check No. 15
 - Inverter analyzer: RSUK0917C

- **YES**
 - Correct the power supply or replace the outdoor unit PCB (main PCB).

Check No. 22
Check the power module.

Normal?

- **NO**
 - Replace the outdoor unit PCB (main PCB).

- **YES**
 - Turn off the power, and reconnect the harnesses. Turn on the power again and start operation.

- **NO**
 - Check the power supply voltage.

 Voltage as rated?

 - **NO**
 - Correct the power supply.

 - **YES**
 - Check the discharge pressure. Go to **Check No. 18**.

 Short circuit or wire breakage between compressor's coil phases?

 - **NO**
 - Replace the compressor.

 - **YES**
 - Replace the compressor.

- **YES**
 - Go to **Check No. 18**.

(R21438)
5. Check
5.1 Thermistor Resistance Check

Check No.01 Disconnect the connectors of the thermistors from the PCB, and measure the resistance of each thermistor using a multimeter.

<table>
<thead>
<tr>
<th>Thermistor temperature</th>
<th>Resistance (kΩ)</th>
</tr>
</thead>
<tbody>
<tr>
<td>°C</td>
<td>°F</td>
</tr>
<tr>
<td>-20</td>
<td>-4</td>
</tr>
<tr>
<td>-15</td>
<td>5</td>
</tr>
<tr>
<td>-10</td>
<td>14</td>
</tr>
<tr>
<td>-5</td>
<td>23</td>
</tr>
<tr>
<td>0</td>
<td>32</td>
</tr>
<tr>
<td>5</td>
<td>41</td>
</tr>
<tr>
<td>10</td>
<td>50</td>
</tr>
<tr>
<td>15</td>
<td>59</td>
</tr>
<tr>
<td>20</td>
<td>68</td>
</tr>
<tr>
<td>25</td>
<td>77</td>
</tr>
<tr>
<td>30</td>
<td>86</td>
</tr>
<tr>
<td>35</td>
<td>95</td>
</tr>
<tr>
<td>40</td>
<td>104</td>
</tr>
<tr>
<td>45</td>
<td>113</td>
</tr>
<tr>
<td>50</td>
<td>122</td>
</tr>
</tbody>
</table>

(R25°C (77°F) = 20 kΩ, B = 3950 K)

- When the room temperature thermistor is soldered on a PCB, remove the PCB from the control PCB to measure the resistance.
- When the connector of indoor heat exchanger thermistor is soldered on a PCB, remove the thermistor and measure the resistance.
5.2 Indoor Fan Motor Connector Output Check

Check No.02
1. Check the connection of connector.
2. Check motor power supply voltage output (pins 5 ~ 8).
3. Check motor control voltage (pins 5 ~ 4).
4. Check rotation command voltage output (pins 5 ~ 3).

<table>
<thead>
<tr>
<th>X20A</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>○</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Motor power supply voltage (290 ~ 330 VDC)
Unused
Unused
GND
Motor control voltage (15 VDC)
Rotation command voltage (0 ~ 5 VDC)
Rotation pulse input
Unused

5.3 Power Supply Waveforms Check

Check No.11
Measure the power supply waveform between No. 1 and No. 2 on the terminal block, and check the waveform disturbance.
- Check if the power supply waveform is a sine wave (Fig.1).
- Check if there is waveform disturbance near the zero-cross (sections circled in Fig.2).

Fig.1
Fig.2
5.4 Electronic Expansion Valve Check

Check No.12

Conduct the following to check the electronic expansion valve (EV).

1. Check if the EV connector is correctly connected to the PCB.
2. Turn the power off and on again, and check if the EV generates a latching sound.
3. If the EV does not generate a latching sound in step 2, disconnect the connector and check the continuity using a multimeter.
4. Check the continuity between the pins 5 - 1, 5 - 2, 5 - 3, 5 - 4 (between the pins 6 - 1, 6 - 2, 6 - 3, and 6 - 4 for the 6P connector models). If there is no continuity between the pins, the EV coil is faulty.
5. If the continuity is confirmed in step 3, the outdoor unit PCB (main PCB) is faulty.

![Diagram of 5P and 6P connectors with pin checks]

- Harness 5P
 - 5P Connector
 - Check
 - 5 - 1
 - 5 - 2
 - 5 - 3
 - 5 - 4

- Harness 6P
 - 6P Connector
 - Check
 - 6 - 1
 - 6 - 2
 - 6 - 3
 - 6 - 4
5.5 Four Way Valve Performance Check

Check No.13

Turn the power off and then on again.

Start heating operation.

* Four way valve coil
 Cooling / Dry / Defrost: Not energized
 Heating: energized

Disconnect the four way valve coil from the connector and check the continuity.

Four way valve coil resistance at 1000 ~ 2000 Ω?

NO

S80 voltage at 208-230 VAC with compressor on? (Fig. 1)

NO

Replace the outdoor unit PCB (main PCB).

YES

Replace the four way valve coil.

Replace the four way valve.

(Fig. 1)

Voltage at S80

208 - 230 VAC

Compressor ON

Time

(R14674)

5.6 Inverter Unit Refrigerant System Check

Check No.14

Refrigerant system check

Is the discharge pipe thermistor disconnected from the holder?

YES

Reconnect the thermistor.

NO

Check for refrigerant leakage. See the service diagnosis on refrigerant shortage (U0).

Replace the refrigerant.

(R15833)
5.7 Inverter Analyzer Check

Check No.15

■ Characteristics

Inverter analyzer: RSUK0917C

If an abnormal stop occurs due to compressor startup failure or overcurrent output when using an inverter unit, it is difficult to judge whether the stop is caused by the compressor failure or some other failure (main PCB, power module, etc.). The inverter analyzer makes it possible to judge the cause of trouble easily and securely. (Connect an inverter analyzer as a quasi-compressor instead of compressor and check the output of the inverter.)

■ Operation Method

Step 1
Be sure to turn off the power.

Step 2
Install an inverter analyzer instead of a compressor.

Note:
Make sure the charged voltage of the built-in smoothing electrolytic capacitor drops to 10 VDC or below before carrying out the service work.

Reference:
If the terminals of the compressor are not FASTON terminals (difficult to remove the wire on the terminals), it is possible to connect wires available on site to the outdoor unit from output side of PCB. (Do not connect them to the compressor at the same time, otherwise it may result in incorrect detection.)
Step 3
Activate power transistor test operation from the outdoor unit.

- **Start method of power transistor test operation**

 Note: Power transistor test operation can be activated only once after turning on the power supply. If reactivation of the power supply transistor operation is needed, turn the power supply off and then on again.

 With Wired Remote Controller (BRC1E73)
 1. Turn the power on.
 2. Set FAN operation using the remote controller.
 3. Press and hold **Cancel** button for 4 seconds or longer.
 4. Select **Test Operation** in the service settings menu, then press **Menu/OK** button.
 → Basic screen returns and “Test Operation” is displayed at the bottom.
 5. Press **On/Off** button within 10 seconds.
 → 3 minutes after pressing **On/Off** button, power transistor test operation will start.
 - Test operation will stop automatically after about 30 minutes.
 To stop the operation, press **On/Off** button.

 With Wireless Remote Controller Kit (BRC082A41W, BRC082A42W(S))
 1. Turn the power on.
 2. Press **Fan** twice. “TEST” is displayed.
 3. Press **On/Off** within 10 seconds.
 → 3 minutes after pressing **On/Off**, power transistor test operation will start.
 - Test operation will stop automatically after about 30 minutes.
 To stop the operation, press **On/Off**.

- **Diagnose method (Diagnose according to 6 LEDs lighting status of the inverter analyzer.)**
 1. If all the LEDs are lit uniformly, the compressor is defective.
 → Replace the compressor.
 2. If the LEDs are not lit uniformly, check the power module.
 → Refer to **Check No.22**.
 3. If NG in **Check No.22**, replace the power module.
 (Replace the main PCB. The power module is united with the main PCB.)
 If OK in **Check No.22**, check if there is any solder cracking on the PCB.
 4. If any solder cracking is found, replace the PCB or repair the soldered section.
 If there is no solder cracking, replace the PCB.
Caution
1. When the output frequency is low, the LEDs blink slowly. As the output frequency increases, the LEDs blink quicker. (The LEDs look like they are lit.)
2. On completion of the inverter analyzer diagnosis, be sure to re-crimp the FASTON terminals. Otherwise, the terminals may be burned due to loosening.

5.8 Rotation Pulse Check on the Outdoor Unit PCB

Check No.16
Make sure that the voltage of \(320 + 100\ V \sim 320 - 50\ V\) is applied.
1. Set operation off and power off. Disconnect the connector S70 or S71.
2. Check that the voltage between the pins 4 - 7 is 320 VDC.
3. Check that the control voltage between the pins 4 - 3 is 15 VDC.
4. Check that the rotation command voltage between the pins 4 - 2 is 0 ~ 6.5 VDC.
5. Keep operation off and power off. Connect the connector S70 or S71.
6. Check whether 4 rotation pulses (0 ~ 15 VDC) are input at the pins 4 - 1 when the fan motor is rotated 1 turn by hand.

When the fuse is melted, check the outdoor fan motor for proper function.
- If NG in step 2 → Defective PCB → Replace the outdoor unit PCB (main PCB).
- If NG in step 4 → Defective Hall IC → Replace the outdoor fan motor.
- If OK in both steps 2 and 4 → Replace the outdoor unit PCB (main PCB).

PCB

<table>
<thead>
<tr>
<th>S70 or S71</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>6</td>
</tr>
<tr>
<td>7</td>
</tr>
</tbody>
</table>

Actual rotation pulse input (0 ~ 15 VDC)
Rotation command voltage (0 ~ 6.5 VDC)
Control voltage 15 VDC
320 VDC
5.9 Installation Condition Check

Check No.17

Installation condition check

- Check the allowable dimensions of the air suction and discharge area.
 - NG: Change the installation location or direction.
 - OK

- Is the discharged air short-circuited?
 - YES: Change the installation location or direction.
 - NO

- Is the outdoor heat exchanger very dirty?
 - YES: Clean the outdoor heat exchanger.
 - NO

- Is the airflow blocked by obstacles or winds blowing in the opposite direction?
 - YES: Change the installation location or direction.
 - NO: Check the outdoor temperature. (The outdoor temperature should be within the operation range.)

5.10 Discharge Pressure Check

Check No.18

Discharge pressure check

- High?
 - NO: Replace the compressor.
 - YES

- Is the stop valve open?
 - NO: Open the stop valve.
 - YES

- Is the connection pipe deformed?
 - YES: Replace the pipe installed at the site.
 - NO

- Is the air filter or indoor/outdoor heat exchanger dirty?
 - YES: Clean the dirty air filter or indoor/outdoor heat exchanger.
 - NO
5.11 Outdoor Fan System Check

Check No.19

DC motor

- Check the outdoor fan system.

- **Is the outdoor fan running?**
 - **YES**
 - Outdoor fan system is functioning.
 - **NO**
 - Fan motor lead wire connector disconnected?
 - **YES**
 - Go to Check No. 16.
 - **NO**
 - Reconnect the connector.

(R21195)

5.12 Main Circuit Short Check

Check No.20

Check to make sure that the voltage between (+) and (–) of the diode bridge (DB1) is approximately 0 V before checking.

- Measure the resistance between the pins of the DB1 referring to the table below.
- If the resistance is ∞ or less than 1 kΩ, short circuit occurs on the main circuit.

| Positive terminal (+) of digital multimeter | ~ (2, 3) | + (4) | ~ (2, 3) | − (1) |
| Negative terminal (−) of digital multimeter | + (4) | ~ (2, 3) | − (1) | ~ (2, 3) |
| Resistance is OK. | several kΩ ~ several MΩ |
| Resistance is NG. | 0 Ω or ∞ |

09/12 class
5.13 Power Module Check

Check No.22 Check to make sure that the voltage between (+) and (–) of the power module is approximately 0 V before checking.

- Disconnect the compressor harness connector from the outdoor unit PCB. To disengage the connector, press the protrusion on the connector.
- Follow the procedure below to measure resistance between the terminals of the power module and the terminals of the compressor with a multimeter. Evaluate the measurement results referring to the following table.

<table>
<thead>
<tr>
<th>Positive terminal (+) of digital multimeter</th>
<th>Power module (+)</th>
<th>UVW</th>
<th>Power module (–)</th>
<th>UVW</th>
</tr>
</thead>
<tbody>
<tr>
<td>Negative terminal (–) of digital multimeter</td>
<td>UVW</td>
<td></td>
<td>UVW</td>
<td></td>
</tr>
</tbody>
</table>

| Resistance is OK. | several kΩ ~ several MΩ |
| Resistance is NG. | 0 Ω or ∞ |

09/12 class

15/18 class

DC_P1: +

DC_N1: -
Part 7
Trial Operation and Field Settings

1. Pump Down Operation ... 113
2. Forced Cooling Operation ... 114
3. Trial Operation ... 115
4. Field Settings .. 118
 4.1 How to Change the Field Settings .. 118
 4.2 Overview of the Field Settings .. 121
 4.3 MAIN/SUB Setting when Using 2 Wired Remote Controllers 122
 4.4 Address and MAIN/SUB Setting for Wireless Remote Controller ... 123
 4.5 Facility Setting (cooling at low outdoor temperature) 125
5. Silicone Grease on Power Transistor/Diode Bridge 126
1. Pump Down Operation

Outline
In order to protect the environment, be sure to conduct pump down operation when relocating or disposing of the unit.

Details
1. Remove the valve caps from the liquid stop valve and the gas stop valve.
2. Carry out forced cooling operation.
3. After 5 to 10 minutes, close the liquid stop valve with a hexagonal wrench.
4. After 2 to 3 minutes, close the gas stop valve and stop the forced cooling operation.

Refer to Forced Cooling Operation on page 114 for details.
2. Forced Cooling Operation

Outline
The forced cooling operation is allowed when both the following conditions are met.
1. The outdoor unit is not abnormal and not in the 3-minute standby mode.
2. The outdoor unit is not operating.

Protection functions have priority over all other functions during forced cooling operation.

Details

- **With Wired Remote Controller (BRC1E73)**
 1. Set to COOL operation using the remote controller.
 2. Press and hold **Cancel** button for 4 seconds or longer. Service settings menu is displayed.
 3. Select **Test Operation** in the service settings menu, and press **Menu/OK** button. Basic screen returns and “Test Operation” is displayed at the bottom.
 4. Press **On/Off** button within 10 seconds, and the forced cooling operation starts.
 - Forced cooling operation will stop automatically after about 15 minutes.
 - To stop the operation, press **On/Off** button.

- **With Wireless Remote Controller Kit (BRC082A41W, BRC082A42W(S))**
 1. Press **** button and select the COOL operation.
 2. Press **** button twice. “TEST” is displayed.
 3. Press **** button within 10 seconds, and the forced cooling operation starts.
 - Forced cooling operation will stop automatically after about 15 minutes.
 - To stop the operation, press **** button.
3. Trial Operation

Outline
- Make sure to install the decoration panel before carrying out trial operation if the wireless remote controller is used.
- Trial operation should be carried out in either cooling or heating operation.

1. Measure the supply voltage and make sure that it is within the specified range.
2. In cooling operation, select the lowest programmable temperature; in heating operation, select the highest programmable temperature.
3. Carry out the trial operation following the instructions in the operation manual to ensure that all functions and parts, such as the movement of the flaps, are working properly.
 - To protect the air conditioner, restart operation is disabled for 3 minutes after the system has been turned off.
4. After trial operation is complete, set the temperature to a normal level (78°F to 82°F (26°C to 28°C) in cooling operation, 68°F to 75°F (20°C to 24°C) in heating operation).

Caution
When performing field settings or trial operation without attaching the decoration panel, do not touch the drain pump. This may cause electric shock. After finishing the construction of refrigerant piping, drain piping, and electric wiring, conduct trial operation accordingly to protect the unit.

Procedure
When operating the air conditioner in cooling operation in winter, or heating operation in summer, set it to the trial operation mode using the following method.
With Wired Remote Controller (BRC1E73)

1. Set to COOL or HEAT operation using the remote controller.

2. Press and hold Cancel button for 4 seconds or longer. Service settings menu is displayed.

3. Select Test Operation in the service settings menu, and press Menu/OK button. Basic screen returns and “Test Operation” is displayed at the bottom.

4. Press On/Off button within 10 seconds, and the test operation starts. Monitor the operation of the indoor unit for a minimum of 10 minutes. During test operation, the indoor unit will continue to cool/heat regardless of the temperature setpoint and room temperature.
 - In the case of above-mentioned procedures 3 and 4 in reverse order, test operation can start as well.

5. Press Menu/OK button in the basic screen. Main menu is displayed.

6. Select Airflow Direction in the main menu and press Menu/OK button. Check that airflow direction is actuated according to the setting. For operation of airflow direction setting, see the operation manual.

7. After the operation of airflow direction is confirmed, press Menu/OK button. Basic screen returns.

8. Press and hold Cancel button for 4 seconds or longer in the basic screen. Service settings menu is displayed.

9. Select Test Operation in the service settings menu, and press Menu/OK button. Basic screen returns and normal operation is conducted.
 - Test operation will stop automatically after 15 ~ 30 minutes. To stop the operation, press On/Off button.

10. If the decoration panel has not been installed, turn off the power after the test operation.
1. Press button and select the COOL or HEAT operation.

2. Press button twice. “TEST” is displayed.

3. Press button within 10 seconds, and the test operation starts.

Monitor the operation of the indoor unit for a minimum of 10 minutes. During test operation, the indoor unit will continue to cool/heat regardless of the temperature setpoint and room temperature.
- In the case of above-mentioned procedures (1) and (2) in reverse order, test operation can start as well.
- Test operation will stop automatically after 15 ~ 30 minutes. To stop the operation, press button.
- Some of the functions cannot be used in the test operation mode.

<table>
<thead>
<tr>
<th>Test Items</th>
<th>Symptom</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indoor and outdoor units are installed securely.</td>
<td>Fall, vibration, noise</td>
</tr>
<tr>
<td>Is the outdoor unit fully installed?</td>
<td>No operation or burn damage</td>
</tr>
<tr>
<td>No refrigerant gas leaks.</td>
<td>Incomplete cooling/heating function</td>
</tr>
<tr>
<td>Refrigerant gas and liquid pipes and indoor drain hose extension are thermally insulated.</td>
<td>Water leakage</td>
</tr>
<tr>
<td>Draining line is properly installed.</td>
<td>Water leakage</td>
</tr>
<tr>
<td>Does the power supply voltage correspond to that shown on the name plate?</td>
<td>No operation or burn damage</td>
</tr>
<tr>
<td>Only specified wires are used for all wiring, and all wires are connected correctly.</td>
<td>No operation or burn damage</td>
</tr>
<tr>
<td>System is properly grounded.</td>
<td>Electrical leakage</td>
</tr>
<tr>
<td>Is wiring size according to specifications?</td>
<td>No operation or burn damage</td>
</tr>
<tr>
<td>Is something blocking the air outlet or inlet of either the indoor or outdoor units?</td>
<td>Incomplete cooling/heating function</td>
</tr>
<tr>
<td>Are refrigerant piping length and additional refrigerant charge noted down?</td>
<td>The refrigerant charge in the system is not clear</td>
</tr>
<tr>
<td>Pipes and wires are connected to the corresponding connection ports/terminal blocks for the connected unit.</td>
<td>No cooling/heating</td>
</tr>
<tr>
<td>Stop valves are opened.</td>
<td>Incomplete cooling/heating function</td>
</tr>
<tr>
<td>Check that the connector of the lead wires of the decoration panel is connected securely.</td>
<td>Louvers do not move</td>
</tr>
<tr>
<td>Indoor unit properly receives wireless remote control commands.</td>
<td>No operation</td>
</tr>
</tbody>
</table>
4. Field Settings

4.1 How to Change the Field Settings

Outline
If optional accessories are mounted on the indoor unit, the indoor unit setting may have to be changed. Refer to the instruction manual for each optional accessory.

Note: When using 2 remote controllers for 1 indoor unit, change the field settings from MAIN remote controller. Note that the field settings can not be set from SUB remote controller.

Wired Remote Controller (BRC1E73)

![Diagram of Wired Remote Controller](R18831)

- **a** Unit No.
- **b** First code No.
- **c** Second code No.
- **d** Mode

1. Press and hold **Cancel** button for 4 seconds or longer. Service settings menu is displayed.

 <Basic screen>

 ![Basic screen](image)

 Press and hold **Cancel** button for 4 seconds or longer during backlight lit.

2. Select **Field Settings** in the Service Settings menu, and press **Menu/OK** button. Field settings screen is displayed.

 <Service settings menu screen>

 ![Service settings menu screen](image)
3. Highlight the mode, and select desired “Mode No.” by using ▲ ▼ (Up/Down) button.

4. In the case of setting per indoor unit during group control (When Mode No. such as 20, 22, 23, 25 are selected), highlight the unit No, and select “Indoor unit No.” to be set by using ▲ ▼ (Up/Down) button. (In the case of group setting, this operation is not needed.)

 In the case of individual setting per indoor unit, current settings are displayed. And, SECOND CODE NO. “- ” means no function.

5. Highlight SECOND CODE NO. of the FIRST CODE NO. to be changed, and select desired “SECOND CODE NO.” by using ▲ ▼ (Up/Down) button. Multiple identical mode number settings are available.

 In the case of setting for all indoor units in the remote control group, available SECOND CODE NO. is displayed as “∗” which means it can be changed. When SECOND CODE NO. is displayed as “- -”, there is no function.

<Service settings screen>

6. Press Menu/OK button. Setting confirmation screen is displayed.

7. Select Yes and press Menu/OK button. Setting details are determined and field settings screen returns.

8. In the case of multiple setting changes, repeat 3 to 7.

9. After all setting changes are completed, press Cancel button twice.

10. Backlight goes out, and [Checking the connection. Please stand by.] is displayed for initialization. After the initialization, the basic screen returns.

<Setting confirmation screen>
To set the field settings, you have to change:
- Mode No.
- First code No.
- Second code No.

1. When in normal mode, hold down 🌞/TEST button for at least 4 seconds to enter the Field Set mode.
2. Select the desired Mode No. with MODE button.
3. Press ⬆️ button and select the First code No.
4. Press ⬇️ button and select the Second code No.
5. Press RESERVE button to confirm the settings.
6. Press 🌞/TEST button to quit the Field Set mode and to return to normal display again.
4.2 Overview of the Field Settings

<table>
<thead>
<tr>
<th>Mode No.</th>
<th>First Code No.</th>
<th>Description of setting</th>
<th>Second Code No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 (20)</td>
<td>0</td>
<td>Filter cleaning sign interval</td>
<td>Light</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>Remote controller thermistor</td>
<td>Enabled</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>Filter cleaning sign</td>
<td>Display</td>
</tr>
<tr>
<td>12 (22)</td>
<td>0</td>
<td>Optional accessories output selection</td>
<td>Compressor</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>High air outlet velocity (for high ceiling applications)</td>
<td>≤ 2.7 m (≤ 8-7/8 ft)</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>Selection of airflow direction range setting</td>
<td>4-way flow</td>
</tr>
<tr>
<td></td>
<td>15 (25)</td>
<td>Drain pump operation with humidifying</td>
<td>Not equipped</td>
</tr>
</tbody>
</table>

Note:
Any function that is not available on the indoor unit is not displayed.
4.3 MAIN/SUB Setting when Using 2 Wired Remote Controllers

Outline
The MAIN/SUB setting is necessary when 1 indoor unit is controlled by 2 remote controllers. When you use 2 remote controllers, set one to MAIN and the other to SUB.

Details
1. The following message is displayed after power-on.
 Checking the connection.
 Please stand by.
 When the above message is displayed, the backlight will not be ON.
 [In the case that 1 indoor unit is controlled by 2 remote controllers:]
 Make sure to set the sub remote controller when the above message is displayed.
 Hold Mode button for 4 seconds or longer to set.
 When the display is changed from “Main RC” to “Sub RC”, the setting is completed.

2. Basic screen is displayed.

1. <Main remote controller>
 Checking the connection. Please stand by.
 Error Code U5
 Checking the connection. Please stand by.

2. <Basic screen>
 Fan
 Press and hold 4 seconds or longer Mode button of sub remote controller side.

1. <Sub remote controller>
 Checking the connection. Please stand by.
 Error Code U5
 Checking the connection. Please stand by.

2. <Basic screen>
 Fan
4.4 Address and MAIN/SUB Setting for Wireless Remote Controller

Outline
- If setting multiple wireless remote controllers to operate in one room, perform address setting for the receiver and the wireless remote controller.
- If using both a wired remote controller and a wireless remote controller with 1 indoor unit, change the MAIN/SUB switch of the transmitter board.

Transmitter Board

Wireless address switch
Set the wireless address setting switch (SS2) on the transmitter board according to the table below.

<table>
<thead>
<tr>
<th>Unit No.</th>
<th>No.1</th>
<th>No.2</th>
<th>No.3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wireless address switch (SS2)</td>
<td>![Address Switch Diagram]</td>
<td>![Address Switch Diagram]</td>
<td>![Address Switch Diagram]</td>
</tr>
<tr>
<td>MAIN/SUB switch (SS1)</td>
<td>![MAIN SWITCH Diagram]</td>
<td>![SUB SWITCH Diagram]</td>
<td>![MAIN SWITCH Diagram]</td>
</tr>
</tbody>
</table>

MAIN/SUB switch
When using both wired and wireless remote controllers for 1 indoor unit, the wired remote controller should be set to MAIN. Therefore, set the MAIN/SUB switch (SS1) of the transmitter board to SUB.
Wireless Remote Controller Address

Factory set is 1. Change the wireless remote controller address setting by the following steps, if necessary.

1. Hold down button and /TEST button at the same time for at least 4 seconds to enter the field setting mode. (SETTING is indicated on the display).
2. Press FAN button and select display setting (or). Each time the button is pressed, the display switches between and .
3. Press button and button to set the address.

Address can be set from 1 ~ 6, but set it to 1 ~ 3 and to same address as the transmitter board. (The transmitter board does not work with address 4 ~ 6.)
4. Press RESERVE button to confirm the setting.
5. Hold down /TEST button to quit the field setting mode and return to the normal display.

Display Settings

When the indoor unit is controlled by an outside controller (central remote controller, etc.), the indoor unit sometimes does not respond to ON/OFF command or temperature setting command from the wireless remote controller. Check what setting the customer needs and make the multiple setting as shown below.

<table>
<thead>
<tr>
<th>Display setting</th>
<th>Remote controller display</th>
<th>Result of the display setting in case the target indoor unit is simultaneously being controlled by more than 1 device</th>
</tr>
</thead>
<tbody>
<tr>
<td>: standard</td>
<td>All operational items are permanently displayed.</td>
<td>In the operation mode changeover, temperature setting or the like are carried out from the wireless remote controller, the indoor unit rejects the instruction. (Signal receiving sound, 1 long beep or 3 short beeps) As a result, a display discrepancy between the operation state of the indoor unit and the indication on the wireless remote controller display occurs.</td>
</tr>
<tr>
<td>: multi system</td>
<td>Operations only remain displayed for a short time after execution of the commands.</td>
<td>Since the indications on the wireless remote controller are turned off, a discrepancy such as described above no longer occurs.</td>
</tr>
</tbody>
</table>
After Setting

Affix corresponding unit number labels onto both air outlet of the decoration panel and onto back of the wireless remote controller.

![Image](image.png)
(R24066)

Note: Set the unit No. of the receiver and the wireless remote controller to be the equal. If the settings differ, the signal from the remote controller cannot be transmitted.

4.5 Facility Setting (cooling at low outdoor temperature)

Outline

This function is limited only for facilities (the target of air conditioning is equipment such as computers). Never use it in a residence or office (the space where there is a human).

Details

- Cutting jumper 6 (J6) on the circuit board will extend the operation range to –10°C (14°F). Installing an air direction adjustment grille (sold separately) will further extend the operation range to –20°C (–4°F). In these cases, the unit will stop operating if the outdoor temperature falls below –20°C (–4°F), restarting once the temperature rises above this level.
- 1. Remove the top plate of the outdoor unit. (09/12 class: 3 screws, 15/18 class: 6 screws)
- 2. Remove the front plate. (09/12 class: 4 screws, 15/18 class: 8 screws)
- 3. Cut the jumper (J6) of the PCB inside.

For the location of the jumper, refer to pages 10, 11.

Caution

- Replace the PCB if you accidentally cut a wrong jumper. Jumpers are necessary for electronic circuit. Improper operation may occur if you cut any of them.

- **Caution**
 - If the outdoor unit is installed where the heat exchanger of the unit is exposed to direct wind, provide a windbreak wall.
 - Intermittent noises may be produced by the indoor unit due to the outdoor fan turning on and off when using facility settings.
 - Do not place humidifiers or other items which might raise the humidity in rooms where facility settings are being used. A humidifier might cause dew jumping from the indoor unit outlet vent.
 - Cutting jumper 6 (J6) sets the indoor fan tap to the highest position. Notify the user about this.
5. Silicone Grease on Power Transistor/Diode Bridge

Outline
Apply the specified silicone grease to the heat radiation part of a power transistor/diode bridge when you replace an outdoor unit PCB. The silicone grease encourages the heat radiation of a power transistor/diode bridge.

Details
1. Wipe off the old silicone grease completely.
2. Apply the silicone grease evenly. See the illustrations below for examples of application.
3. Tighten the screws of the power transistor/diode bridge.
4. Make sure that the heat radiation parts are firmly contacted to the radiation fin.

Note: Smoke emission may be caused by bad heat radiation when the silicone grease is not appropriately applied.

- OK: Evenly applied

![Power transistor (or diode bridge) and PCB](R22541)
![Silicone grease and radiation fin](R22541)

- NG: Not evenly applied

![Power transistor (or diode bridge) and PCB](R21866)

- NG: Foreign matter is stuck.

![Power transistor (or diode bridge) and PCB](R21867)

Part 8
Appendix

1. Piping Diagrams..128
 1.1 Indoor Unit.. 128
 1.2 Outdoor Unit... 129
2. Wiring Diagrams..130
 2.1 Indoor Unit.. 130
 2.2 Outdoor Unit... 131
3. Operation Limit..133
1. Piping Diagrams
1.1 Indoor Unit

FFQ09/12/15/18Q2VJU

REFRIGERANT FLOW
COOLING
HEATING

HEAT EXCHANGER

FAN

LIQUID PIPE CONNECTION PORT φA

GAS PIPE CONNECTION PORT φB

<table>
<thead>
<tr>
<th>MODEL</th>
<th>A</th>
<th>B</th>
</tr>
</thead>
<tbody>
<tr>
<td>FFQ09Q2VJU</td>
<td>1/4 (6.4)</td>
<td>3/8 (9.5)</td>
</tr>
<tr>
<td>FFQ12Q2VJU</td>
<td>3/8 (9.5)</td>
<td>3/8 (9.5)</td>
</tr>
<tr>
<td>FFQ15Q2VJU</td>
<td>5/16 (8.0)</td>
<td>3/8 (9.5)</td>
</tr>
<tr>
<td>FFQ18Q2VJU</td>
<td>5/16 (8.0)</td>
<td>5/16 (8.0)</td>
</tr>
</tbody>
</table>
1.2 Outdoor Unit

RX09/12QMVJU

RX15/18QMVJU
2. Wiring Diagrams

2.1 Indoor Unit

FFQ09/12/15/18Q2VJU

Note:
A1P: Control PCB
A2P: Transmitter board for wireless remote controller
A3P: Receiver for wireless remote controller
Refer to Part 3 for Printed Circuit Board Connector Wiring Diagram.
2.2 Outdoor Unit

RX09/12QMVJU

NOTE
1. REFER TO THE NAMEPLATE FOR THE POWER REQUIREMENTS.
C400, C405 : CAPACITOR
DB1 : DIODE BRIDGE
FU1, FU2, FU3 : FUSE
IPM1 : INTELLIGENT POWER MODULE
L1, L2 : LIVE
L1R : REACTOR
M1C : COMPRESSOR MOTOR
M1F : FAN MOTOR
MRM10, MRCW : MAGNETIC RELAY
PCB1 : PRINTED CIRCUIT BOARD
PS : SWITCHING POWER SUPPLY
Q1L : OVERLOAD PROTECTOR
Q1L : OVERLOAD PROTECTOR
R1T, R2T, R3T : THERMISTOR
S20, S30, S40 : CONNECTOR
S71, S80, S90 : CONNECTOR
SA1 : SURGE ARRESTER
V2, V3, V150 : VARISTOR

Note: PCB1: Main PCB
Refer to Part 3 for Printed Circuit Board Connector Wiring Diagram.
RX15/18QMVJU

WIRING DIAGRAM

FIELD WIRING

INDOOR

TO INDOOR UNIT

1.
2.
3.

L1 -
L2 -

POWER SUPPLY

OUTDOOR

PCB

NOTE:

1. REFER TO THE NAMEPLATE FOR THE POWER REQUIREMENTS.

C7 : CAPACITOR

DB1 : DIODE BRIDGE

FU1, FU2, FU3 : FUSE

IPM1 : INTELLIGENT POWER MODULE

L1, L2 : LIME

M1C : COMPRESSOR MOTOR

M1F : FAN MOTOR

MRM10, MRM20, MRCW : MAGNETIC RELAY

PAM : PULSE AMPLITUDE MODULATION

PCB : PRINTED CIRCUIT BOARD

IN CASE OF HEAT PUMP TYPE

FU1, FU2, FU3, IPM1, L1, L2

IPM1

INFO:

- PCB: Main PCB
- Refer to Part 3 for Printed Circuit Board Connector Wiring Diagram.

132
3. Operation Limit

Notes:
1. The graphs are based on the following conditions.
 - Equivalent piping length 25ft
 - Level difference 0ft
2. Facility Setting (cooling at low outdoor temperature: only for RX model)
 This function is limited only for facilities (the target of air conditioning is equipment such as computers).
 Never use it in a residence or office (the space where there is a human).
 Indoor fan tap should be fixed to high.
 - Cutting jumper 6 (J6) on the circuit board: extend the operation range to 14°F (-10°C).
 - Installing an air direction adjustment grille (wind baffle) (sold separately): extend the operation range to -4°F (-20°C).
Revision History

<table>
<thead>
<tr>
<th>Month / Year</th>
<th>Version</th>
<th>Revised contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>12 / 2016</td>
<td>SiUS091628E</td>
<td>First edition</td>
</tr>
<tr>
<td>03 / 2017</td>
<td>SiUS091628EA</td>
<td>Model addition: FFQ18Q2VJU, RX18QMVJU</td>
</tr>
</tbody>
</table>
• Daikin products are manufactured for export to numerous countries throughout the world. Prior to purchase, please confirm with your local authorized importer, distributor and/or retailer whether this product conforms to the applicable standards, and is suitable for use, in the region where the product will be used. This statement does not purport to exclude, restrict or modify the application of any local legislation.

• Ask a qualified installer or contractor to install this product. Do not try to install the product yourself. Improper installation can result in water or refrigerant leakage, electrical shock, fire or explosion.

• Use only those parts and accessories supplied or specified by Daikin. Ask a qualified installer or contractor to install those parts and accessories. Use of unauthorized parts and accessories or improper installation of parts and accessories can result in water or refrigerant leakage, electrical shock, fire or explosion.

• Read the user’s manual carefully before using this product. The user's manual provides important safety instructions and warnings. Be sure to follow these instructions and warnings. If you have any inquiries, please contact your local importer, distributor and/or retailer.

Cautions on product corrosion
1. Air conditioners should not be installed in areas where corrosive gases, such as acid gas or alkaline gas, are produced.
2. If the outdoor unit is to be installed close to the sea shore, direct exposure to the sea breeze should be avoided. If you need to install the outdoor unit close to the sea shore, contact your local distributor.