INSTALLATION MANUAL

VRV III System air conditioner

REYQ72PAYD REYQ72PATJ
REYQ96PAYD REYQ96PATJ
REYQ120PAYD REYQ120PATJ
1. FIRST OF ALL 1
1-1. Safety considerations 1
1-2. Special notice of product 2
1-3. Disposal requirements 3
2. INTRODUCTION 3
2-1. Combination 3
2-2. Standard supplied accessories 3
2-3. Option accessory 3
2-4. Technical and Electrical specifications . 3
2-5. Main components 3
3. SELECTION OF LOCATION 3
4. INSPECTING AND HANDLING THE UNIT 4
5. PLACING THE UNIT 4
6. REFRIGERANT PIPING 4
6-1. Selection of piping material and Refrigerant branching kit 4
6-2. Protection against contamination when installing pipes 5
6-3. Pipe connection 5
6-4. Connecting the refrigerant piping 5
6-5. Example of connection 6
7. FIELD WIRING 9
7-1. Power circuit, safety device and cable requirements 9
7-2. Wiring Connection Example for Whole System 9
7-3. Leading wire Procedure 9
7-4. Transmission Wiring Connection Procedure 10
7-5. Power Wiring Connection Procedure 10
7-6. Procedure for Wiring Inside Units 11
8. AIR TIGHT TEST AND VACUUM DRYING 11
9. PIPE INSULATION 12
10. CHECKING OF DEVICE AND INSTALLATION CONDITIONS 12
11. ADDITIONAL REFRIGERANT CHARGE AND CHECK OPERATION 12
11-1. Before working 12
11-2. Procedure of Adding Refrigerant charging and check operation 13
12. ONSITE SETTINGS 16
13. TEST RUN 16
13-1. Before test run 16
13-2. Test Run 16
13-3. Checks After Test Run 17
14. CAUTION FOR REFRIGERANT LEAKS 17

1. FIRST OF ALL

This document is an installation manual for the Daikin REYQ-PA Series VRV Inverter. Before installing the unit, read this manual thoroughly, and following the instructions contained in it. After installation, do a test run to make sure the unit runs properly, and then explain how to operate and take care of the unit to the customer, using the operation manual. Lastly, make sure the customer keeps this manual, along with the operation manual, in a safe place.

1-1 Safety considerations

Read these “SAFETY CONSIDERATIONS for Installation” carefully before installing air conditioning equipment. After completing the installation, make sure that the unit operates properly during the startup operation. Instruct the customer on how to operate and maintain the unit. Inform customers that they should store this Installation Manual with the Operation Manual for future reference.

Always use a licensed installer or contractor to install this product. Improper installation can result in water or refrigerant leakage, electrical shock, fire, or explosion.

Meanings of DANGER, WARNING, CAUTION, and NOTE Symbols:

DANGER Indicates an imminently hazardous situation which, if not avoided, will result in death or serious injury.
WARNING Indicates a potentially hazardous situation which, if not avoided, could result in death or serious injury.
CAUTION Indicates a potentially hazardous situation which, if not avoided, may result in minor or moderate injury. It may also be used to alert against unsafe practices.
NOTE Indicates situations that may result in equipment or property-damage accidents only.

DANGER

- Refrigerant gas is heavier than air and replaces oxygen. A massive leak can lead to oxygen depletion, especially in basements, and an asphyxiation hazard could occur leading to serious injury or death.
- Do not ground units to water pipes, gas pipes, telephone wires, or lightning rods as incomplete grounding can cause a severe shock hazard resulting in severe injury or death. Additionally, grounding to gas pipes could cause a gas leak and potential explosion causing severe injury or death.
- If refrigerant gas leaks during installation, ventilate the area immediately. Refrigerant gas may produce toxic gas if it comes in contact with fire. Exposure to this gas could cause severe injury or death.
- After completing the installation work, check that the refrigerant gas does not leak throughout the system.
- Do not install unit in an area where flammable materials are present due to risk of explosions that can cause serious injury or death.
- Safely dispose all packing and transportation materials in accordance with federal/state/local laws or ordinances. Packing materials such as nails and other metal or wood parts, including plastic packing materials used for transportation may cause injuries or death by suffocation.

WARNING

- Only qualified personnel must carry out the installation work. Installation must be done in accordance with this installation manual. Improper installation may result in water leakage, electric shock, or fire.
- When installing the unit in a small room, take measures to keep the refrigerant concentration from exceeding allowable safety limits. Excessive refrigerant leaks, in the event of an accident in a closed ambient space, can lead to oxygen deficiency.
- Use only specified accessories and parts for installation work. Failure to use specified parts may result in water leakage, electric shocks, fire, or the unit failing.
- Install the air conditioner on a foundation strong enough that it can withstand the weight of the unit. A foundation of insufficient strength may result in the unit failing and causing injuries.
- Take into account strong winds, typhoons, or earthquakes when installing. Improper installation may result in the unit failing and causing accidents.
- Make sure that a separate power supply circuit is provided for this unit and that all electrical work is carried out by qualified personnel according to local state, and national regulations. An insufficient power supply capacity or improper electrical construction may lead to electric shocks or fire.
• Make sure that all wiring is secured, that specified wires are used, and that no external forces act on the terminal connections or wires. Improper connections or installation may result in fire.

• When wiring, position the wires so that the electric parts box lid can be securely fastened. Improper positioning of the electric parts box lid may result in electric shocks, fire, or the terminals overheating.

• Before touching electrical parts, turn off the unit.

• Be sure to install a ground fault circuit interrupter if one is not already available. This helps prevent electrical shocks or fire.

• Securely fasten the outside unit terminal cover (panel). If the terminal cover/panel is not installed properly, dust or water may enter the outside unit causing fire or electric shock.

• When installing or relocating the system, keep the refrigerant circuit free from substances other than the specified refrigerant (R-410A) such as air. Any presence of air or other foreign substance in the refrigerant circuit can cause an abnormal pressure rise or rupture, resulting in injury.

• Do not change the setting of the protection devices. If the pressure switch, thermal switch, or other protection device is shortened and operated forcibly, or parts other than those specified by Daikin are used, fire or explosion may occur.

CAUTION

• Do not touch the switch with wet fingers. Touching a switch with wet fingers can cause electric shock.

• Do not allow children to play on or around the unit to prevent injury.

• Do not touch the refrigerant pipes during and immediately after operation as the refrigerant pipes may be hot or cold, depending on the condition of the refrigerant flowing through the refrigerating piping, compressor, and other refrigerant cycle parts. Your hands may suffer burns or frostbite if you touch the refrigerant pipes. To avoid injury, give the pipes time to return to normal temperature or, if you must touch them, be sure to wear proper gloves.

• Heat exchanger fins are sharp enough to cut. To avoid injury wear glove or cover the fins when working around them.

• Install drain piping to proper drainage. Improper drain piping may result in water leakage and property damage.

• Insulate piping to prevent condensation.

• Be careful when transporting the product.

• Do not turn off the power immediately after stopping operation. Always wait for at least 5 minutes before turning off the power. Otherwise, water leakage may occur.

• Do not use a charging cylinder. Using a charging cylinder may cause the refrigerant to deteriorate.

• Refrigerant R-410A in the system must be kept clean, dry, and tight.

 (a) Clean and Dry – Foreign materials (including mineral oils such as SUNISO oil or moisture) should be prevented from getting into the system.

 (b) Tight – R-410A does not contain any chlorine, does not destroy the ozone layer, and does not reduce the earth’s protection against harmful ultraviolet radiation. R-410A can contribute to the greenhouse effect if it is released. Therefore take proper measures to check for the tightness of the refrigerant piping installation. Read the chapter Refrigerant Piping and follow the procedures.

• Since R-410A is a blend, the required additional refrigerant must be charged in its liquid state. If the refrigerant is charged in a state of gas, its composition can change and the system will not work properly.

• The indoor unit is for R-410A. See the catalog for indoor models that can be connected. Normal operation is not possible when connected to other units.

• Remote controller (wireless kit) transmitting distance can be shorter than expected in rooms with electronic fluorescent lamps (inverter or rapid start type). Install the indoor unit far away from fluorescent lamps as much as possible.

• Indoor units are for indoor installation only. Outdoor units can be installed either outdoors or indoors.

• Do not install the air conditioner in the following locations:

 (a) Where a mineral oil mist or oil spray or vapor is produced, for example, in a kitchen. Plastic parts may deteriorate and fall off or result in water leakage.

 (b) Where corrosive gas, such as sulfuric acid gas, is produced. Corroding copper pipes or soldered parts may result in refrigerant leakage.

 (c) Near machinery emitting electromagnetic waves. Electromagnetic waves may disturb the operation of the control system and cause the unit to malfunction.

 (d) Where flammable gas may leak, where there is carbon fiber, or ignitable dust suspension in the air, or where volatile flammables such as thinner or gasoline are handled. Operating the unit in such conditions can cause a fire.

• Take adequate measures to prevent the outside unit from being used as a shelter by small animals. Small animals making contact with electrical parts can cause malfunctions, smoke, or fire. Instruct the customer to keep the area around the unit clean.

NOTE

• Install the power supply and control wires for the indoor and outdoor units at least 3.5 feet away from televisions or radios to prevent image interference or noise. Depending on the radio waves, a distance of 3.5 feet may not be sufficient to eliminate the noise.

• Dismantling the unit, treatment of the refrigerant, oil and additional parts must be done in accordance with the relevant local, state, and national regulations.

• Do not use the following tools that are used with conventional refrigerants: gauge manifold, charge hose, gas leak detector, reverse flow check valve, refrigerant charge base, vacuum gauge, or refrigerant recovery equipment.

• If the conventional refrigerant and refrigerant oil are mixed in R-410A, the refrigerant may deteriorate.

• This air conditioner is an appliance that should not be accessible to the general public.

• The wall thickness of field-installed pipes should be selected in accordance with the relevant local, state, and national regulations.

1-2 Special notice of product

[CLASSIFICATION]

This air conditioner comes under the term “appliances not accessible to the general public”.

[REFRIGERANT]

VRVIII System use R410A refrigerant.

• The refrigerant R410A requires strict cautions for keeping the system clean, dry and tight. Read the chapter “REFRIGERANT PIPING” carefully and follow these procedures correctly.

 A. Clean and dry

 Foreign materials (including mineral oils such as SUNISO oil or moisture) should be prevented from getting mixed into the system.

 B. Tight

 Take care to keep the system tight when installing.

 R410A does not contain any chlorine, does not destroy the ozone layer, and does not reduce the earth’s protection against harmful ultraviolet radiation.

 R410A can contribute slightly to the greenhouse effect if it is released.

• Since R410A is a mixed refrigerant, the required additional refrigerant must be charged in its liquid state. If the refrigerant is charged in a state of gas, its composition changes and the system will not work properly.
2. INTRODUCTION

- REYQ-PA series are designed for outdoor installation and used for cooling and heating applications.
- The BS units that combined with REYQ-PA system for changing the refrigerant flow to indoor units are BSVQ36 - 60 - 96P type only. To combine with other type BS unit will cause malfunction.
- The indoor units that combined with REYQ-PA system for air conditioning are Daikin VRV series indoor units that compatible with R410A. To learn which indoor units are compatible with R410A refer to the product catalogs. To combine with other refrigerant indoor unit will cause malfunction.

2-1 Combination

- The indoor units can be installed in the following range.
 (Outside unit) (Total capacity index of indoor units)
 REYQ72PAYD/PATJ ………………….43 – 93.5
 REYQ96PAYD/PATJ ………………….57.5 – 124.5
 REYQ120PAYD/PATJ ………………….72 – 156

- If the total capacity of the connected indoor units exceeds the capacity of the outside unit, cooling and heating performance may drop when running the indoor units. See the capacity table in the Engineering Data Book for details.

2-2 Standard supplied accessories

Confirm the following accessories are included. The storage location of the accessories is shown in figure 1.

\[
\begin{array}{|c|c|c|c|c|c|}
\hline
\text{Name} & \text{Clamp(1)} & \text{Clamp(2)} & \text{Vinyl tube} & \text{Conduit mounting plate} & \text{Manuals, etc.} \\
\hline
\text{Quantity} & 9 \text{ pcs.} & 3 \text{ pcs.} & 4 \text{ pcs.} & 2 \text{ pcs.} & 2 \text{ pcs.} \\
\hline
\text{Shape} & & & & & \\
\hline
\end{array}
\]

- Operation manual
- Installation manual
- REQUEST FOR THE INDICATION label (Installation records)

\[
\begin{array}{|c|c|c|c|c|c|}
\hline
\text{Name} & \text{Liquid side accessory pipe (1)} & \text{Liquid side accessory pipe (2)} & \text{Suction gas side accessory pipe (1)} & \text{Suction gas side accessory pipe (2)} \\
\hline
\text{Quantity} & & & & \\
\hline
\text{Shape} & & & & \\
\hline
\end{array}
\]

-Refer to “6. REFRIGERANT PIPING”

2-3 Option accessory

To install the outside units, the following optional parts are also required. To select an optimum kit, refer to “6. REFRIGERANT PIPING”.
- Refrigerant branching kit

\[
\begin{array}{|c|c|c|c|c|}
\hline
\text{Name} & \text{REFNET header} & \text{REFNET joint} & \text{REFNET header} & \text{REFNET joint} \\
\hline
\text{Quantity} & & & & \\
\hline
\text{Shape} & & & & \\
\hline
\end{array}
\]

\[
\begin{array}{|c|c|c|c|}
\hline
\text{Name} & \text{REFNET header} & \text{REFNET joint} & \text{REFNET header} \\
\hline
\text{Quantity} & & & \\
\hline
\text{Shape} & & & \\
\hline
\end{array}
\]

2-4 Technical and Electrical specifications

Refer to the Engineering Data Book for the complete list of specifications.

2-5 Main components

For main components and function of the main components, refer to the Engineering Data Book.

3. SELECTION OF LOCATION

Select a location for installation that meets the following conditions and get the customer’s permission.
1. Select the location of the unit in such a way that neither the discharged air nor the sound generated by the unit disturb anyone.
2. The foundation is strong enough to support the weight of the unit and the floor is flat to prevent vibration and noise generation.
3. The piping length between the outside unit and the indoor unit may not exceed the allowable piping length. (Refer to “6. REFRIGERANT PIPING”)
4. Locations where the unit’s suction vent and outlet vent do not generally face the wind.
 Wind blowing directly into the suction or outlet vents will interfere with the unit’s operation.
 If necessary, install some kind of obstruction to block the wind.
5. The space around the unit is adequate for servicing and the minimum space for air inlet and air outlet is available. (See the “Installation Space Examples” for the minimum space requirements.)

Installation Space Examples

- The installation space requirement shown in figure 2 is a reference for cooling operation when the outdoor temperature is 95°F.
 If the design outdoor temperature exceeds 95°F or the heat load exceeds maximum capacity in all the outside unit, take an even larger space on the intake shown in figure 2.
- During installation, install the units using the most appropriate of the patterns shown in figure 2 for the location in question, taking into consideration human traffic and wind.
- If the number of units installed is more than that shown in the pattern in figure 2, install the units so there are no short circuits.
- As regards space in front of the unit, consider the space needed for the local refrigerant piping when installing the units.
- Even if the work conditions in figure 2 do not apply, contact your dealer or Daikin directly.

\[
\begin{array}{|c|c|c|c|c|}
\hline
\text{Name} & \text{HP / LP gas side accessory pipe (1)} & \text{HP / LP gas side accessory pipe (2)} & \text{L type accessory joint (1)} & \text{L type accessory joint (2)} \\
\hline
\text{Quantity} & & & & \\
\hline
\text{Shape} & & & & \\
\hline
\end{array}
\]

\[
\begin{array}{|c|c|c|c|}
\hline
\text{Name} & \text{HP / LP gas side accessory pipe (1)} & \text{HP / LP gas side accessory pipe (2)} \\
\hline
\text{Quantity} & & & \\
\hline
\text{Shape} & & & \\
\hline
\end{array}
\]

\[
\begin{array}{|c|c|c|c|}
\hline
\text{Name} & \text{HP / LP gas side accessory pipe (1)} & \text{HP / LP gas side accessory pipe (2)} \\
\hline
\text{Quantity} & & & \\
\hline
\text{Shape} & & & \\
\hline
\end{array}
\]

For Patterns 1 and 2 in figure 2:
- Wall height for front side – no higher than 59 in.
- Wall height on the suction side – no higher than 19-5/8 in.
- Wall height for sides – no limit.
4. INSPECTING AND HANDLING THE UNIT
- At delivery, the package should be checked and any damage should be reported immediately to the carrier claims agent.
- When handling the unit, take into account the following:
 1. Fragile, handle the unit with care.
 2. Decide on the transportation route.
 3. If a forklift is to be used, pass the forklift arms through the large openings, and an asphyxiation hazard could occur leading to serious injury or death.
- Refrigerant gas in heavier air and replaces oxygen. A massive leak could lead to oxygen depletion, especially in basements, and an asphyxiation hazard could occur leading to serious injury or death. Refer to the chapter “CAUTION FOR REFRIGERANT LEAKS”.

5. PLACING THE UNIT
- Make sure the unit is installed level on a sufficiently strong base to prevent vibration and noise. (Refer to figure 6)
- The base should support the unit with the extent larger than hatched area in figure 7.
- If protective rubber is to be attached, attach it to the whole face of the base.
- The height of the base should be at least 5-7/8 in. from the floor.
- Secure the unit to its base using foundation bolts. (Use four commercially available M12-type foundation bolts, nuts, and washers.)
- The foundation bolts should be inserted 13/16 in.

(Refer to figure 6)
1. Independent base (four corner type)
2. Independent base (with center support type)
3. Beam base (Horizontal)
4. Beam base (Vertical)
5. Center of the product

(Refer to figure 7)
1. Foundation bolt point (φ9/16 in. dia., : 4positions)
2. (Depth of product)
3. (Inner dimension of the base)
4. (Outer dimension of the base)

NOTE
- There are restrictions on the refrigerant pipe connecting order between outside unit in the case of the multi system. See “2-1 Combination” for detail.
- When installing on a roof, make sure the roof floor is strong enough and be sure to water-proof all work.
- Make sure the area around the machine drains properly by setting up drainage grooves around the foundation. Drain water is sometimes discharged from the outside unit when it is running.
- For anti-corrosion type, use nuts with resin washers. If the paint on nut connections comes off, the anti-corrosion effect may decrease.

6. REFRIGERANT PIPING

NOTE
- All field piping must be installed by a licensed refrigeration technician and must comply with relevant local and national regulations.
- After piping work is complete, do not under any circumstances open the shutoff valve until “7. FIELD WIRING” and “10. CHECKING OF DEVICE AND INSTALLATION CONDITIONS” are complete.
- Do not use flux when brazing the refrigerant piping. Use the phosphor copper brazing filler metal (B-Cu93P-710/795 : ISO 3677) which does not require flux.
 (Flux has extremely negative effect on refrigerant piping systems. For instance, if the chlorine based flux is used, it will cause pipe corrosion or, in particular, if the flux contains fluorine, it will damage the refrigerant oil.)

6-1 Selection of piping material and Refrigerant branching kit
- Use only pipes which are clean inside and outside and which do not accumulate harmful sulfur, oxidants, dirt, cutting oils, moisture, or other contamination. (Foreign materials inside pipes including oils for fabrication must be 9 mg/10 ft or less.)
- Use the following items for the refrigerant piping.
 Material: Jointless phosphor-deoxidized copper pipe
 Size: See “6-5 Example of connection” to determine the correct size.
 Thickness: Select a thickness for the refrigerant piping which complies with national and local laws.
- For piping work, follow the maximum tolerated length, difference in height, and length after a branch indicated in the “6-5 Example of connection”.

4. PLACING THE UNIT
- Make sure the unit is installed level on a sufficiently strong base to prevent vibration and noise. (Refer to figure 6)
- The base should support the unit with the extent larger than hatched area in figure 7.
- If protective rubber is to be attached, attach it to the whole face of the base.
- The height of the base should be at least 5-7/8 in. from the floor.
- Secure the unit to its base using foundation bolts. (Use four commercially available M12-type foundation bolts, nuts, and washers.)
- The foundation bolts should be inserted 13/16 in..
• Outside unit multi connection piping kit and refrigerant branching kit (sold separately) are needed for connection of piping between outside units (in case of multi system) and piping branches.

Use only separately sold items selected specifically according to the outside unit multi connection piping kit, the refrigerant branching kit selection in the “6-5 Example of connection”.

6-2 Protection against contamination when installing pipes
Protect the piping to prevent moisture, dirt, dust, etc. from entering the piping.

<table>
<thead>
<tr>
<th>Place</th>
<th>Installation period</th>
<th>Protection method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outdoor</td>
<td>More than a month</td>
<td>Pinch the pipe</td>
</tr>
<tr>
<td>Indoor</td>
<td>Regardless of the period</td>
<td>Pinch or tape the pipe</td>
</tr>
</tbody>
</table>

NOTE
Exercise special caution to prevent dirt or dust when passing piping through holes in walls and when passing pipe edges to the exterior.

6-3 Pipe connection
- Be sure to perform nitrogen permutation or nitrogen blow when brazing. (Refer to figure 8)
- Brazing without performing nitrogen permutation or nitrogen blow into the piping will create large quantities of oxidized film on the inside of the pipes, adversely affecting valves and compressors in the refrigerating system and preventing normal operation.

(Refer to figure 8)
1. Refrigerant pipe
2. Location to be brazed
3. Nitrogen
4. Taping
5. Handy valve
6. Regulator
- The pressure regulator for the nitrogen released when doing the brazing should be set to about 2.9 psi (Enough to feel a slight breeze on your cheek).

NOTE
Do not use anti-oxidants when brazing the pipe joints. Residue can clog pipes and break equipment.

6-4 Connecting the refrigerant piping
1. Direction to bring out the pipes
The local inter unit piping can be connected either forward or to the sides (taken out through the bottom) as shown in the figure 9. When passing out through the bottom, use the knock hole in the bottom frame.

(Refer to figure 9)
1. Left-side connection
2. Front connection
3. Right-side connection

Precautions when knocking out knock holes
- Open knock hole (large, small) in the base frame by drilling the 4 concave around it with a φ -1/4"-bit. (Refer to figure 10)

(Refer to figure 10)
1. Knock hole
 (large : for liquid pipe, suction gas pipe and HP/LP gas pipe)
2. Knock hole (small : for equalizer pipe)
3. Drill
4. Concave section (4 points)
- Be sure to avoid damaging the casing.
- After knocking out the holes, we recommend you remove any burrs and paint them using the repair paint to prevent rusting.
- When passing electrical wiring through the knock holes, protect the wiring with a conduit or bushings, making sure not to damage the wiring.

2. Removing Pinch Piping
- When connecting refrigerant piping to an outside unit, remove the pinch piping using the procedure in the figure 11.

(Refer to figure 11)

NOTE
- Make sure the onsite piping does not come into contact with other piping or the bottom frame or side panels of the unit.

4. Branching the refrigerant piping
Heed the restrictions below when installing the refrigerant branching kit and read the installation instruction manual with the kit. (Improper installation could lead to malfunctioning or breakdown of the outside unit.)

<REFNET joint>
Install the REFNET joint so it splits horizontally or vertically.

(Refer to figure 13)
1. Horizontal
2. A-arrow view
3. Horizontal surface
4. ±30° or less
5. Vertical

<REFNET header>
Install the REFNET header so it splits horizontally.

(Refer to figure 14)
1. Horizontal surface
2. B-arrow view

CAUTION
- About handling of shutoff valves, refer to [Shutoff valve operation procedure] in “11-1 Before working”.
- After removing the gass, remove the pinch piping.
- Any gas remaining inside may blow off the pinch piping when you dissolve the brazing, causing damage.

(Refer to figure 11)
1. Pinch piping (3 pieces)
2. Do not remove the relay piping.
3. Pinch piping
4. Procedure 1 : Confirm the shutoff valve is closed.
5. Procedure 2 : Connect a charge hose to the service port of shutoff valve and remove the gas in the pinch piping.
6. Procedure 3 : After removing the gas in the pinch piping, dissolve the brazing using a burner and remove the pinch piping.

3. Connecting refrigerant piping to outside units
- Figure 12 shows the example of connecting refrigerant piping to outside units.
- The local inter unit piping next accessory pipes are field supplied.

(Refer to figure 12)
1. When connected to the front
2. When connected at lateral side (bottom)
3. Remove the shutoff valve cover to connect.
4. Remove the knock hole on the bottom frame and route the piping under the bottom frame.
5. Liquid pipe shutoff valve
6. Suction gas pipe shutoff valve
7. HP/LP gas pipe shutoff valve
8. Brazing
9. Liquid side accessory pipe (1)
10. Suction gas side accessory pipe (1)
11. HP/LP gas side accessory pipe (1)
12. L type accessory joint (1)
13. L type accessory joint (2)
14. Liquid side accessory pipe (2)
15. Suction gas side accessory pipe (2)
16. HP/LP gas side accessory pipe (2)
17. In case of 72PA type use the Accessory joint for connecting the Suction gas side accessory pipe (2) to Suction gas side shutoff valve.
18. Accessory joint
Example of connection

Connection of 8 indoor units

<table>
<thead>
<tr>
<th>Outside unit</th>
<th>Indoor unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Side (3 pipes)</td>
<td>Side (2 pipes)</td>
</tr>
<tr>
<td>Suction gas pipe</td>
<td>Gas pipe</td>
</tr>
<tr>
<td>HP/LP gas pipe</td>
<td>Liquid pipe</td>
</tr>
</tbody>
</table>

- Piping from outside unit to BS unit
 - (Bold) : 3 pipes
 - (Suction) gas pipe
- Piping from BS unit to indoor unit or Refrigerant branch kit to indoor unit used as cooling only
 - (Thin) : 2 pipes
- Piping from outside unit to BS unit

Single outside system

<table>
<thead>
<tr>
<th>BS Unit</th>
<th>Indoor unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Connection of 8 indoor units)</td>
<td></td>
</tr>
</tbody>
</table>

First outside unit multi connection piping kit

<table>
<thead>
<tr>
<th>BS Unit</th>
<th>Indoor unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Cool/Heat selection possible)</td>
<td></td>
</tr>
</tbody>
</table>

Actual pipe length

- Example 8 : a + b + c + d + e ≤ 540 ft
- Example 6 : a + b + c + d + e ≤ 540 ft

Allowable length

- Between outside unit and indoor unit: a + b + c + d + e ≤ 540 ft
- Between first outside unit and indoor unit: a + m + n + p ≤ 540 ft
- Between adjacent indoor units: a + m + n + p ≤ 540 ft

Maximum allowable length

- Between outside unit and indoor unit: a + b + c + d + e ≤ 540 ft
- Between first outside unit and indoor unit: a + m + n + p ≤ 540 ft

Difference in height

- Between outside and indoor unit: H1 ≤ 164 ft (Max 130 ft if the outside unit is below)
- Between indoor and adjacent indoor units: H2 ≤ 49 ft
- Between outside and adjacent outdoor units: H3 ≤ 16 ft

Allowable length after the branch

- Example 8 : b + c + d + e + s ≤ 130 ft
- Example 6 : b + c + d + e + s ≤ 130 ft
- Example 8 : o ≤ 130 ft
Outdoor unit multi connection piping kit and Refrigerant branch kit selection

Important Notes:
- Refrigerant branch kits can only be used with R410A.
- When multi outdoor system are installed, be sure to use the special separately sold Outdoor unit multi connection piping kit (BHFP26P90U).
- Never use BHFP26M00U, BHFP22M00U for M type of this series or 1 part kit (field supplied).

How to select the REFNET joint
- When using REFNET joint at the first branch counted from the outside unit side, choose from the following table in accordance with the total capacity index of all the indoor units connected below the REFNET joint. (Example : REFNET joint A)
- Choose the REFNET joints other than the first branch from the following table in accordance with the total capacity index of all the indoor units connected downstream.

<table>
<thead>
<tr>
<th>Indoor unit total capacity index</th>
<th>Refrigerant branch kit name</th>
</tr>
</thead>
<tbody>
<tr>
<td>x < 72</td>
<td>KHRP25M33T</td>
</tr>
<tr>
<td>72 ≤ x < 111</td>
<td>KHRP25M72T, KHRP26M22T</td>
</tr>
<tr>
<td>111 ≤ x</td>
<td>KHRP25M72H, KHRP26M72H</td>
</tr>
</tbody>
</table>

How to select the REFNET header
- Choose from the following table in accordance with the total capacity index of all the indoor units connected below the REFNET header.

<table>
<thead>
<tr>
<th>Indoor unit total capacity index</th>
<th>Refrigerant branch kit name</th>
</tr>
</thead>
<tbody>
<tr>
<td>x < 72</td>
<td>KHRP25M33H</td>
</tr>
<tr>
<td>72 ≤ x < 111</td>
<td>KHRP25M72H, KHRP26M33H</td>
</tr>
<tr>
<td>111 ≤ x</td>
<td>KHRP25M72H</td>
</tr>
</tbody>
</table>

How to select the REFNET header
- Choose from the following table in accordance with the number of outside units.

<table>
<thead>
<tr>
<th>Number of outside unit</th>
<th>Connecting piping kit name</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 units</td>
<td>BHFP26P90U</td>
</tr>
</tbody>
</table>

Pipe size selection

The thickness and material shall be selected in accordance with local code.

For an outside unit installation, make the settings in accordance with the following figure.

Example for indoor units connected downstream

Example REFNET joint C : Indoor units 1 + 2 + 3 + 4 + 5 + 6

Example REFNET header : Indoor units 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8

Example for outdoor units system capacity type

<table>
<thead>
<tr>
<th>Piping size (O. D.)</th>
<th>Suction gas pipe</th>
<th>HP/LP gas pipe</th>
<th>Liquid pipe</th>
</tr>
</thead>
<tbody>
<tr>
<td>φ 3/4</td>
<td>φ 3/8</td>
<td>φ 3/8</td>
<td>φ 3/8</td>
</tr>
<tr>
<td>φ 7/8</td>
<td>φ 3/4</td>
<td>φ 1/2</td>
<td>φ 5/8</td>
</tr>
<tr>
<td>φ 1-1/8</td>
<td>φ 7/8</td>
<td>φ 1-1/8</td>
<td>φ 5/8</td>
</tr>
</tbody>
</table>

Piping between outside unit multi connection piping kit and outside unit (part B)

<table>
<thead>
<tr>
<th>Piping size (O. D.)</th>
<th>Suction gas pipe</th>
<th>HP/LP gas pipe</th>
<th>Liquid pipe</th>
</tr>
</thead>
<tbody>
<tr>
<td>φ 7/8</td>
<td>φ 3/4</td>
<td>φ 3/8</td>
<td>φ 3/8</td>
</tr>
<tr>
<td>φ 3/4</td>
<td>φ 3/4</td>
<td>φ 1/2</td>
<td>φ 5/8</td>
</tr>
<tr>
<td>φ 1-1/8</td>
<td>φ 7/8</td>
<td>φ 1-1/8</td>
<td>φ 5/8</td>
</tr>
</tbody>
</table>

Piping between outside unit multi connection piping kits

Piping between outside unit and refrigerant branch kit (part A)

Piping between refrigerant branch kits

Piping between refrigerant branch kit and BS unit

Piping between BS unit and refrigerant branch kit

Choose from the following table in accordance with the number of outside units.

<table>
<thead>
<tr>
<th>Number of outside unit</th>
<th>Connecting piping kit name</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 units</td>
<td>BHFP26P90U</td>
</tr>
</tbody>
</table>

Piping between outside unit multi connection piping kits

Piping between BS unit and refrigerant branch kit

Choose from the following table in accordance with the number of outside units.

<table>
<thead>
<tr>
<th>Number of outside unit</th>
<th>Connecting piping kit name</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 units</td>
<td>BHFP26P90U</td>
</tr>
</tbody>
</table>

Piping size (O. D.)

φ 3/4	φ 3/8	φ 3/8	φ 3/8
φ 7/8	φ 3/4	φ 1/2	φ 5/8
φ 1-1/8	φ 7/8	φ 1-1/8	φ 5/8

Piping between outside unit multi connection piping kits

Piping between BS unit and refrigerant branch kit

Choose from the following table in accordance with the number of outside units.

<table>
<thead>
<tr>
<th>Number of outside unit</th>
<th>Connecting piping kit name</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 units</td>
<td>BHFP26P90U</td>
</tr>
</tbody>
</table>

Piping between BS unit and refrigerant branch kit

Choose from the following table in accordance with the number of outside units.

<table>
<thead>
<tr>
<th>Number of outside unit</th>
<th>Connecting piping kit name</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 units</td>
<td>BHFP26P90U</td>
</tr>
</tbody>
</table>

Piping between refrigerant branch kit, BS unit and indoor unit.

Match to the size of the connection piping on the indoor unit.

<table>
<thead>
<tr>
<th>Indoor unit total capacity index</th>
<th>Refrigerant branch kit name</th>
</tr>
</thead>
<tbody>
<tr>
<td>φ 3/4</td>
<td>φ 3/8</td>
</tr>
<tr>
<td>φ 7/8</td>
<td>φ 3/4</td>
</tr>
<tr>
<td>φ 1-1/8</td>
<td>φ 7/8</td>
</tr>
</tbody>
</table>

Piping between refrigerant branch kit, BS unit and indoor unit.

Match to the size of the connection piping on the indoor unit.

<table>
<thead>
<tr>
<th>Indoor unit total capacity index</th>
<th>Refrigerant branch kit name</th>
</tr>
</thead>
<tbody>
<tr>
<td>φ 3/4</td>
<td>φ 3/8</td>
</tr>
<tr>
<td>φ 7/8</td>
<td>φ 3/4</td>
</tr>
<tr>
<td>φ 1-1/8</td>
<td>φ 7/8</td>
</tr>
</tbody>
</table>
How to calculate the additional refrigerant to be charged

[HEAT RECOVER SYSTEM]

Additional refrigerant to be charged: \(R (\text{lb}) \)

\(R \) should be rounded off in units of 0.1 lb.

How to calculate the additional refrigerant to be charged

\[
R = \left(\frac{(\text{Total length (ft)}}{\text{of liquid piping size at } \phi\frac{3}{8}} \right) \times 0.249 + \left(\frac{(\text{Total length (ft)}}{\text{of liquid piping size at } \phi\frac{5}{8}} \right) \times 0.121 + \left(\frac{(\text{Total length (ft)}}{\text{of liquid piping size at } \phi\frac{3}{4}} \right) \times 0.040 + \left(\frac{(\text{Total length (ft)}}{\text{of liquid piping size at } \phi\frac{1}{2}} \right) \times 0.015 \right) \times 1.02 + \left(25 \times 0.175 + 1 \times 0.121 + 1 \times 0.081 + 75 \times 0.040 + 10 \times 0.015 \right) \times 1.02 + 2.2 + 1.1
\]

Round off in units of 0.1 lb.

Example for refrigerant branch using REFNET joint and REFNET header for systems and each pipe length as shown below.

Outside system: REYQ192PAYD
Total capacity of indoor unit: 116% (Refer to figure 15)

\[
R = 11.82 \rightarrow 11.1 \text{ lb}
\]

Note 1.

When the equivalent pipe length between outside and indoor units is 295 ft or more, the size of main pipes on the liquid side (refer to figure 15) must be increased according to the right table. (Never increase suction gas pipe and HP/LP gas pipe.)

(Refer to figure 15)
1. Outdoor unit
2. Main pipes
3. Increase only liquid pipe size
4. First refrigerant branch kit
5. BS unit
6. Indoor unit

Note 2.

Allowable length after the first refrigerant branch kit to indoor units is 130 ft or less, however it can be extended up to 295 ft if all the following conditions are satisfied. (In case of "Branch with REFNET joint")

Required Conditions

1. It is necessary to increase the pipe size between the first branch kit and the final branch kit. (Reducers must be procured on site) However, the pipes that are same pipe size with main pipe must not be increased

 \[b + c + d + e + f + g + p \leq 295 \text{ ft.} \]

 Increase the pipe size of b, c, d, e, f, g

2. For calculation of Total extension length, the actual length of above pipes must be doubled.

 (except main pipe and the pipes that are not increased)

 \[a + b \times 2 + c \times 2 + d \times 2 + e \times 2 + f \times 2 + g \times 2 + h + i + j + k + l + m + n + p \leq 3280 \text{ ft.} \]

3. Indoor unit to the nearest branch kit \(\leq 130 \text{ ft.} \)

4. The difference between

 [Outside unit to the farthest indoor unit]
 and [Outside unit to the nearest indoor unit] \(\leq 130 \text{ ft.} \)

 The farthest indoor unit \[8 \]

 The nearest indoor unit \[1 \]

 \[(a + b + c + d + e + f + g + p) - (a + h) \leq 130 \text{ ft.} \]

*If available on the site, use this size. Otherwise it cannot be increased.
7. FIELD WIRING

- Use copper conductors only.
- When using residual current operated circuit breakers, be sure to provide a dedicated power circuit. Never use a power supply shared by another appliance.
- Always ground wires in accordance with relevant local and national regulations.
- This machine includes an inverter device. Connect earth and leave the ground-faults should be used in conjunction with main switch or fuse for use with wiring.
- Make sure the weak electric wiring (i.e. for the remote controller, between units, etc.) and the power wiring do not pass near each other, keeping them at least 2 in. apart. Proximity may cause electrical interference, malfunctions, and breakage.
- Be sure to connect the power wiring to the power wiring terminal block and secure it as described in "7-4 Transmission Wiring Connection Procedure".
- Secure wiring with clamp such as insulation lock ties to avoid contact with piping.
- Shape the wires to prevent the structure such as the EL. COMPO. BOX lid deforming. And close the cover firmly.
- All field wiring is to be procured on site.

7-1 Power circuit, safety device and cable requirements

- A power circuit (see the following table) must be provided for connection of the unit. This circuit must be protected with the required safety devices, i.e. a main switch, a slow blow fuse on each phase and an earth leakage circuit breaker.
- If you connect in reversed phase, replace two of the three phases. The unit can not operate normally in reversed phase.
- Never install a phase advancing capacitor. As this unit is equipped with an inverter, installing a phase advancing capacitor will not only deteriorate power factor improvement effect, but also may cause capacitor abnormal heating accident due to high-frequency waves.
- Do not operate until refrigerant piping work is completed.

7-2 Wiring Connection Example for Whole System

(Refer to figure 16)
1. Power supply
2. Main switch
3. Earth leakage circuit breaker
4. Fuse
5. Outside unit
6. COOL/HEAT selector
7. Remote controller
8. Indoor unit
9. BS unit

7-3 Leading wire Procedure

- The power wiring and ground wiring are passed out from the power wiring hole on the sides, the front (knock hole) or the bottom frame (knock hole).
- The transmission wiring is passed out from the wiring hole (knock hole) on the front of the unit or from a piping hole.

(Refer to figure 17-1)
1. Electric wiring diagram
2. Knockout hole
3. Power line
4. Transmission line

(Refer to figure 17-2)
1. EL.COMPO.BOX lid
2. Service lid
3. [Service precautions] Label location

<table>
<thead>
<tr>
<th>Phase and frequency</th>
<th>Voltage</th>
<th>Minimum circuit amp.</th>
<th>Recommended fuses</th>
<th>Transmission line selection</th>
</tr>
</thead>
<tbody>
<tr>
<td>REYQ72PAYD</td>
<td>208-230V</td>
<td>16.0A</td>
<td>20A</td>
<td>AWG18-16</td>
</tr>
<tr>
<td>REYQ296PAYD</td>
<td>208-230V</td>
<td>20.4A</td>
<td>25A</td>
<td>AWG18-16</td>
</tr>
<tr>
<td>REYQ120PAYD</td>
<td>208-230V</td>
<td>20.5A</td>
<td>25A</td>
<td>AWG18-16</td>
</tr>
<tr>
<td>REYQ144PAYD</td>
<td>208-230V</td>
<td>33.4A</td>
<td>25A+25A</td>
<td>AWG18-16</td>
</tr>
<tr>
<td>REYQ168PAYD</td>
<td>208-230V</td>
<td>37.0A</td>
<td>25A+25A</td>
<td>AWG18-16</td>
</tr>
<tr>
<td>REYQ192PAYD</td>
<td>208-230V</td>
<td>40.6A</td>
<td>25A+25A</td>
<td>AWG18-16</td>
</tr>
<tr>
<td>REYQ72PATJ</td>
<td>208-230V</td>
<td>36.1A</td>
<td>40A</td>
<td>AWG18-16</td>
</tr>
<tr>
<td>REYQ296PATJ</td>
<td>208-230V</td>
<td>43.8A</td>
<td>45A</td>
<td>AWG18-16</td>
</tr>
<tr>
<td>REYQ120PATJ</td>
<td>208-230V</td>
<td>44.2A</td>
<td>50A</td>
<td>AWG18-16</td>
</tr>
<tr>
<td>REYQ144PATJ</td>
<td>208-230V</td>
<td>57.6A</td>
<td>40A+40A</td>
<td>AWG18-16</td>
</tr>
<tr>
<td>REYQ168PATJ</td>
<td>208-230V</td>
<td>64.9A</td>
<td>40A+50A</td>
<td>AWG18-16</td>
</tr>
<tr>
<td>REYQ192PATJ</td>
<td>208-230V</td>
<td>72.2A</td>
<td>50A+50A</td>
<td>AWG18-16</td>
</tr>
</tbody>
</table>
7-4 Transmission Wiring Connection Procedure

- Referring to figure 18 connect the transmission wiring between outside unit and indoor unit, outside unit and outside unit of other system, outside unit and outside unit of same system.

(Refer to figure 18)
1. EL. COMPO. BOX (1)
2. EL. COMPO. BOX (2)
3. Do not open the EL. COMPO. BOX (2) lid. (There are no work when installation)
4. Never connect the power wire.
5. To outside unit of other system
6. Use duplex wires (No polarity)
7. BS unit
8. Indoor unit
9. Indoor unit (Cooling only)

- Transmission wiring (About the symbol \[\rightarrow \], see figure 18) should be done within the following limitations. If they are exceeded, transmission problems may occur.

\[\rightarrow \] Between outside unit and BS (or indoor) unit
Between BS unit and indoor unit
Between outside unit and outside unit of other systems
- Max. wiring length : 3280 ft
- Max. total wiring length : 6560 ft
- Max. no. of branches : 16
- Max. no. of branches is allowed after branch (See figure 19)
- No branch is allowed after branch (See figure 19)
- Max. no. of outside units of other system that can be connected : 10

(Refer to figure 19)
1. Branch
2. Branch after branch

\[\rightarrow \] Between outside unit and outside unit of same system
- Max. wiring length : 100 ft

- The transmission wiring inside the EL.COMPO.BOX should be secured using the clamp (1) as shown in figure 20.

(Refer to figure 20)
1. In the EL.COMPO.BOX
2. Retain to the EL.COMPO.BOX with the accessory clamp (1).
3. Vinyl tube (accessory)

- Outside the units, the transmission wiring must be finished simultaneously with the local refrigerant piping, and wound with tape (field supply) as shown in figure 21.

7-5 Power Wiring Connection Procedure

- Be sure to connect the power supply wiring to the power supply terminal block and hold it in place using the included clamp as shown in the figure 22.

- The L1, L2, L3 and N phases of the power wiring should be secured separately to the hook using the included clamp (1).

- The ground wiring should be bound to the power wiring using the included clamp (1) to prevent outside force from being applied to the terminal area.

(Refer to figure 22)
1. Power supply (MODEL PAYD:3~460V 60Hz)
 (MODEL PATJ:3~208-230V 60Hz)
2. Earth leakage circuit breaker
3. Branch switch, earth leakage circuit breaker
4. Ground wire
5. EL. COMPO. BOX (1)
6. EL. COMPO. BOX (2)
7. Do not open the EL. COMPO. BOX (2) lid. (There are no work when installation)
8. Attach insulation sleeves
9. Power supply terminal block
10. Ground terminal
11. Clamp (1) (accessory)
12. Vinyl tube (accessory)

- Be sure to use crimp-style terminal with insulating sleeves for connections. (See the figure below.)

- For wiring, use the designated power wire and connect firmly, then secure to prevent outside pressure being exerted on the terminal board.

- Use an appropriate screwdriver for tightening the terminal screws. A screwdriver with a small head will strip the head and make proper tightening impossible.

- Over-tightening the terminal screws may break them. See the following table for the tightening torque of the terminal screws.

<table>
<thead>
<tr>
<th>Screw size</th>
<th>Tightening torque (ft · lbf)</th>
</tr>
</thead>
<tbody>
<tr>
<td>M8 Power terminal, ground terminal</td>
<td>4.06 – 5.38</td>
</tr>
</tbody>
</table>

- When pulling the ground wire out, wire it so that it comes through the cut out section of the cup washer. (See the figure below.) An improper ground connection may prevent a good ground from being achieved.
7-6 Procedure for Wiring Inside Units

- Referring to figure 23, secure and wire the power and transmission wiring using the included clamp (1).
- Wire so that the ground wiring does not come into contact with the compressor lead wiring.
- If they touch, this may have an adverse effect on other devices.
- The transmission wiring must be at least 2 in. away from the power wiring.
- Make sure all wiring do not contact to the pipes (hatching parts in the figure 23).

(Refer to figure 23)
1. Secure to the hook of column support using the accessory clamp (1).
2. Electric conduit
3. When routing out the power/ground wires from the left side.
4. When routing out the transmission wiring from the opening for piping.
5. When routing out the power/ground wires from the front.
6. Clear over 2 in.
7. When routing out the transmission wiring from the knockout hole.
8. When routing out the power/ground wires from the right side.
9. Power wiring
10. Ground wire
11. Transmission wiring
12. When wiring, exercise sufficient caution not to detach the acoustic insulators from the compressor.
13. Secure to the back side of the support beam using the accessory clamp (1).
14. Retain to the back of the column support with the accessory clamp (2).

Precautions when knocking out knockout holes
- To punch out a knockout hole, hit it with a hammer.
- Open an appropriate hole as needed.
- After knocking out the holes trim off the burr, then we recommend you to paint the edges and areas around the edges using the repair paint to prevent rusting.
- Power line : Open a knockout hole as shown at left and connect it using a conduit.
- Transmission line : Connect it using a conduit in the knockout hole on the right.

NOTE
- When two wires are connected to a single terminal, connect them so that the rear sides of the crimp contacts face each other. Also, make sure the thinner wire is on top, securing the two wires simultaneously to the resin hook using the included clamp (1).

8. AIR TIGHT TEST AND VACUUM DRYING

- After finished piping work, carry out air tight test and vacuum drying.

NOTE
- Always use nitrogen gas for the airtightness test.
- Absolutely do not open the shutoff valve until the main power circuit insulation measurement has been completed. (measuring after the shutoff valve is opened will cause the insulation value to drop.)

<Needed tools>

<table>
<thead>
<tr>
<th>Gauge manifold Charge hose valve</th>
<th>To prevent entry of any impurities and insure sufficient pressure resistance, always use the special tools dedicated for R410A.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vacuum pump</td>
<td>The vacuum pump for vacuum drying should be able to lower the pressure to –14.6 psi.</td>
</tr>
<tr>
<td></td>
<td>Take care the pump oil never flow backward into the refrigerant pipe during the pump stops.</td>
</tr>
</tbody>
</table>

<The system for air tight test and vacuum drying>
- Referring to figure 24, connect a nitrogen tank, refrigerant tank, and a vacuum pump to the outside unit.
- The refrigerant tank and the charge hose connection to refrigerant charge port or the valve A in figure 24 are needed in “11. ADDITIONAL REFRIGERANT CHARGE AND CHECK OPERATION”.

(Refer to figure 24)
1. Gauge manifold
2. Nitrogen
3. Measuring device
4. R410A tank (with siphon)
5. Vacuum pump
6. Charge hose
7. Refrigerant charge port
8. HP/LP gas pipe shutoff valve
9. Suction gas pipe shutoff valve
10. Liquid pipe shutoff valve
11. Valve A
12. Valve B
13. Valve C
14. Outside unit
15. To BS (or indoor) unit
16. Shutoff valve
17. Service port
18. Field piping
19. Gas flow

NOTE
- The air-tightness test and vacuum drying should be done using the service ports of equalizer pipe, HP/LP gas pipe, suction gas pipe and liquid pipe shutoff valve. See the [R410A] Label attached to the front plate of the outside unit for details on the location of the service port (see figure at right).
- See [Shutoff valve operation procedure] in “11-1 Before working” for details on handling the shutoff valve.
- The refrigerant charge port is connected to unit pipe. When shipped, the unit contains the refrigerant, so use caution when attaching the charge hose.

<Air tight test>

Pressurize the liquid pipe, suction gas pipe, HP/LP gas pipe and equalizer pipe from the service ports of each shutoff valve to 550 psi (do not pressurize more than 550 psi). If the pressure does not drop within 24 hours, the system passes the test.

If there is a pressure drop, check for leaks, make repairs and perform the airtight test again.
9. PIPE INSULATION

- Insulation of pipes should be done after performing “8. AIR TIGHT TEST AND VACUUM DRYING”.
- Always insulate the liquid piping, the HP/LP gas piping, the gas piping, and these pipe connections.
- Failing to insulate the pipes may cause leaking or burns. Especially, be sure to insulate the HP/LP gas piping as withstanding as the suction pipe because the suction gas follows in the HP/LP gas piping when the system is whole cooling mode.
- And be sure to use the insulation which can withstand such temperatures of 248°F or more for the HP/LP gas piping, the equalizer pipe and the gas piping because the HP/LP gas follows in these pipings.
- Reinforce the insulation on the refrigerant piping according to the installation environment. Condensation might form on the surface of the insulation. Refer to the below.

- Ambient temperature: 86°F, humidity: 75% to 80% RH: min. thickness: 9/16 in.
- If the ambient temperature exceeds 86°F and the humidity 80% RH, then the min. thickness is 3/4 in.
- See the Engineering data book for detail.
- If there is a possibility that condensation on the shutoff valve might drip down into the indoor unit through gaps in the insulation and piping because the outside unit is located higher than the indoor unit, etc., this must be prevented by caulking the connections, etc.

(Refer to figure 25)

- The piping lead-out hole lid should be attached after opening a knock hole. (Refer to figure 26)
- If small animals and the like might enter the unit through the piping lead-out hole, close the hole with blocking material (procured on site) after completion of “11. ADDITIONAL REFRIGERANT CHARGE AND CHECK OPERATION”. (Refer to figure 29)

(Refer to figure 25)
1. Insulation material
2. Caulking, etc.

(Refer to figure 26)
1. Piping lead-out hole lid
2. Open a knock hole at “X”.
3. Block “X”.

- After knocking out the holes, we recommend you remove burrs in the knock holes (See figure 26) and paint the edges and areas around the edges using the repair paint.

10. CHECKING OF DEVICE AND INSTALLATION CONDITIONS

Be sure to check the followings.

For those doing electrical work
1. Make sure there is no faulty transmission wiring or loosing of a nut. See “7-4 Transmission Wiring Connection Procedure”.
2. Make sure there is no faulty power wiring or loosing of a nut. See “7-5 Power Wiring Connection Procedure”.
3. Has the insulation of the main power circuit deteriorated? Measure the insulation and check the insulation is above regular value in accordance with relevant local and national regulations.

For those doing pipe work
1. Make sure piping size is correct. See “6-1 Selection of piping material and Refrigerant branching kit”.
2. Make sure insulation work is done. See “9. PIPE INSULATION”.
3. Make sure there is no faulty refrigerant piping. See “6. REFRIGERANT PIPING”.

11. ADDITIONAL REFRIGERANT CHARGE AND CHECK OPERATION

The outside unit is charged with refrigerant when shipped from the factory, but depending on the size and length of the piping when installed, it may require additional charging.

For charging the additional refrigerant, follow the procedure in this chapter. And then carry out the check operation.

11-1 Before working

[About the refrigerant tank]

Check whether the tank has a siphon pipe before charging and place the tank so that the refrigerant is charged in liquid form. (See the figure below.)

With siphon pipe

Stand the tank upright and charge.
(The siphon pipe goes all the way inside, so the tank does not need be put upside-down charge in liquid form.)

Other tanks

Stand the tank upside-down and charge.

- Always use the proper refrigerant (R410A). If charged with the refrigerant containing an improper material, it may cause an explosion or accident.
- R410A is a mixed refrigerant, so charging it as a gas will cause the refrigerant composition to change, which may prevent normal operation.

[Shutoff valve operation procedure]

When operating the shutoff valve, follow the procedure instructed below.

- Do not open the shutoff valve until “10. CHECKING OF DEVICE AND INSTALLATION CONDITIONS” are completed. If the shutoff valve is left open without turning on the power, it may cause refrigerant to buildup in the compressor, leading insulation degradation.
- Be sure to use the correct tools. The shutoff valve is not a back-seat type. If forced it to open, it might break the valve body.
- When using a service port, use the charge hose.
- After tightening the cap, make sure no refrigerant gas is leaking.
Tightening torque
The sizes of the shutoff valves on each model and the tightening torque for each size are listed in the table below.

<table>
<thead>
<tr>
<th>Size of Shutoff Valve</th>
<th>72PA type</th>
<th>96PA type</th>
<th>120PA type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liquid pipe shutoff valve</td>
<td>φ3/8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Suction gas shutoff valve</td>
<td>φ3/4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HP/LP gas shutoff valve</td>
<td></td>
<td>φ3/4</td>
<td></td>
</tr>
</tbody>
</table>

(Refer to figure 27)
1. Service port
2. Cap
3. Hex holes
4. Shaft (valve body)
5. Seal section

To open
1. Remove the cap and turn the shaft counterclockwise with the hexagon wrench.
2. Turn it until the shaft stops.
3. Make sure to tighten the cap securely.
(For the tightening torque, refer to the item <Tightening Torque>.)

To close
1. Remove the cap and turn the shaft clockwise with the hexagon wrench.
2. Securely tighten the valve until the shaft contacts the main body seal.
3. Make sure to tighten the cap securely.
(For the tightening torque, refer to the item <Tightening Torque>.)

<table>
<thead>
<tr>
<th>Shutoff valve size</th>
<th>Tightening torque ft · lbf (Turn clockwise to close)</th>
</tr>
</thead>
<tbody>
<tr>
<td>φ3/8</td>
<td>3.98 - 4.87 Hexagonal wrench 4mm 9.95 - 12.17</td>
</tr>
<tr>
<td>φ1/2</td>
<td>5.97 - 7.30 13.3 - 16.2</td>
</tr>
<tr>
<td>φ3/4</td>
<td>19.9 - 24.3 Hexagonal wrench 8mm 16.6 - 20.3</td>
</tr>
</tbody>
</table>

[How to Check How Many Units are Connected]
It is possible to find out how many indoor or outside unit in the system are turned on by operating the push button on the PC-board (A1P) of outside unit. Follow the procedure below to check how many indoor or outside units are turned on.

(1) Press the MODE button (BS1) once at Setting Mode 1 (H1P : off), and set the MONITOR MODE (H1P : Blinking).

(2) Press the SET button (BS2) the number of times until the LED display matches that at right.
For checking the number of outside units : eight times
For checking the number of indoor units : five times

(3) Press the RETURN button (BS3) and read the number of units from the display of H2P through H7P.
[Reading Method]
The display of H2P through H7P should be read as a binary number, with ● standing for “1” and ○ standing for “0”.

Ex: For the LED display at right, this would be “010110”, which would mean 22 units are connected.

32 x 0 + 16 x 1 + 8 x 0 + 4 x 1 + 2 x 1 + 1 x 0 = 22 units
Note: “000000” indicates 64 units.

(4) Press the MODE button (BS1) once. This returns to Setting Mode 1 (H1P : OFF, default).

11-2 Procedure of Adding Refrigerant charging and check operation

WARNING Electric Shock Warning
• Make sure to close the EL. COMPO. BOX lid before turning on the power.
• Perform the setting on the PC-board (A1P) of the outside unit and check the LED display after the power is on via the inspection door which is in the EL. COMPO. BOX lid.
(Refer to figure 28)
1. EL. COMPO. BOX (1) (right)
2. Inspection door
3. EL.COMPO. BOX (2) (left)
4. Do not open the EL. COMPO. BOX (2) (left) lid or that inspection door.
5. EL. COMPO. BOX (1) (right) lid
6. LED (H1–8P)
7. Push button (BS1–5)
8. Lift the protruding part to open the inspection door.

• Use an insulated rod to operate the push buttons via the EL. COMPO. BOX’s inspection door. There is a risk of electric shock if you touch any live parts, since this operation must be performed with the power on.
1. Make sure the following works are complete in accordance with the installation manual.
 ■ Piping work
 ■ Wiring work
 ■ Air tight test
 ■ Vacuum drying
 ■ Installation work for BS, indoor unit

2. Calculate the “additional charging amount” using “How to calculate the additional refrigerant to be charged” in “6-5 Example of connection”.

3. Open the valve B (See the figure 29). The valve A, C and the liquid pipe, suction gas pipe, HP/LP gas pipe, equalizer pipe shutoff valves must be left closed), and charge the refrigerant of the “additional charging amount” from the liquid side shutoff valve service port.

(Refer to figure 29)
1. Measuring device
2. R410A tank (with siphon)
3. Charge hose

4. Refrigerant charge port
5. HP/LP gas pipe shutoff valve
6. Suction gas shutoff valve
7. Liquid pipe shutoff valve
8. Valve A
9. Valve B
10. Valve C
11. Outside unit
12. To BS, indoor unit
13. Field pipings
14. Refrigerant flow
15. Shutoff valve
16. Service port

5. Perform the refrigerant charging following [Automatic refrigerant charging operation procedure] as shown below. And charge the remaining refrigerant of the “additional charging amount”.

[Automatic refrigerant charging operation procedure]

(Refer to figure 30)
1. Measuring device
2. R410A tank (with siphon)
3. Charge hose
4. Refrigerant charge port
5. HP/LP gas pipe shutoff valve
6. Suction pipe shutoff valve
7. Liquid pipe shutoff valve
8. Valve A
9. Valve B
10. Valve C
11. Outside unit
12. To BS, indoor unit
13. Field pipings
14. Refrigerant flow when charging
15. Shutoff valve
16. Service port

(1) Open the liquid pipe, suction gas pipe and HP/LP gas pipe shutoff valves. (The valve A~C must be closed. See figure 28.)
(2) Close the EL. COMPO. BOX (1) lid and all front panel except on the EL. COMPO. BOX (1) side. (*) And turn the power to the outdoor unit and all connected BS, indoor units. (*)
Push the TEST button (BS4) once. (The LED displays will change as below.)

<table>
<thead>
<tr>
<th>1P</th>
<th>2P</th>
<th>3P</th>
<th>4P</th>
<th>5P</th>
<th>6P</th>
<th>7P</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Push the TEST button (BS4) once. (The LED displays will change as below.)

<table>
<thead>
<tr>
<th>1P</th>
<th>2P</th>
<th>3P</th>
<th>4P</th>
<th>5P</th>
<th>6P</th>
<th>7P</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Hold the TEST button (BS4) down for 5 seconds or more. (The LED displays will change as below and fan of outside unit will start rotation.)

<table>
<thead>
<tr>
<th>1P</th>
<th>2P</th>
<th>3P</th>
<th>4P</th>
<th>5P</th>
<th>6P</th>
<th>7P</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

When the compressor start working and the LED displays change any state in below (*3), go to “In case of cooling mode” or “In case of heating mode” in accordance with the LED displays.

<table>
<thead>
<tr>
<th>1P</th>
<th>2P</th>
<th>3P</th>
<th>4P</th>
<th>5P</th>
<th>6P</th>
<th>7P</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

---In case of cooling mode---

(7) Push the TEST button (BS4) once within 5 minutes after procedure (5) (*4) and close the all front panels (*5). After that, open the valve A immediately (*6) and watch the remote controller display of indoor unit.

(8) If the remote controller display shows “PE” code (*7), ready to close the valve A. And go to procedure (9). If the remote controller display shows other code, close the valve A immediately and refer to [Remote controller cooling mode malfunction code].

Beware the fan running when open the front panel.

The fan may continue rotation after the system stop the operation.

(9) When the compressor stop working (the fan may continue rotation.), close the valve A immediately (*8). And check the LED displays are as below and the remote controller display shows “P9” code.

<table>
<thead>
<tr>
<th>1P</th>
<th>2P</th>
<th>3P</th>
<th>4P</th>
<th>5P</th>
<th>6P</th>
<th>7P</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

After checking, push the MODE button (BS1) once and the charging is complete.

---In case of heating mode---

(7) Push the TEST button (BS4) once within 5 minutes after procedure (5) (*4) and close the all front panels. After that, open the valve A immediately (See figure 30) (*6) and check the charged amount by measuring device. During operation, if the remote controller display shows “P2” or “P8” code, close the valve A immediately and refer to [Remote controller cooling mode malfunction code].

Beware the fan running when open the front panel.

The fan may continue rotation after the system stop the operation.

(8) When the required amount of refrigerant is charged, close the valve A (See figure 30) (*8) and push the RETURN button (BS3) once. And then go to procedure (9).

(9) Push the MODE button (BS1) once, and the charging is complete.

Notes (*1)--(*9)

(*1) Lead the refrigerant charge hose etc from the pipe intake. All front panels must be closed at the procedure (7).

(*2) If you perform the refrigerant charging operation within the refrigerant system that have the power off unit, the operation cannot finish properly. Check the number of outside and indoor units that is powered. For checking, see [How to check how many units are connected] in chapter 11-1.

(*3) It takes about 2–10 minutes for getting stability of refrigerant state. If the additional refrigerant is little and operation is started before getting stability, the system can not judge the charging amount precisely and it cause over charge.

(*4) If the TEST button (BS4) is not pushed within 5 minutes, “P2” code will displayed in the remote controller. In this case, refer [Remote controller cooling (or heating) mode malfunction code].

(*5) If the front panel is opened during the operation, the system cannot operate properly.

(*6) If you leave the system without connecting the refrigerant tank or opening the valve A for 30 minutes or more, the system stop operation and “P2” code are displayed in remote controller. In this case, refer [Remote controller cooling (or heating) mode malfunction code].

(*7) Depending on the situation of operation such as the charging amount is little, the “PE” code may not be displayed and the “P9” code may be displayed.

(*8) Always close the valve A and take the tank off.

The refrigerant charge port of this unit have electric expansion valve and the valve are closed when charging is finished. However, the valve will opened when ather operation (Check operation, nomal operation, etc.). If you leave the tank connected, the refrigerant will charged and it cause over charge.

[Remote controller cooling mode malfunction code]

<table>
<thead>
<tr>
<th>Code</th>
<th>The work contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>PE</td>
<td>Charging is almost finished. Ready to close the valve A.</td>
</tr>
<tr>
<td>PA</td>
<td>The refrigerant tank is empty. Close the valve A and replace empty tank to the new tank. After changing the tank, open the valve A again. Beware the fan running. The outside unit does not stop operation.</td>
</tr>
<tr>
<td>PH</td>
<td>The refrigerant tank is empty. Close the valve A and replace empty tank to the new tank. After changing the tank, open the valve A again. Beware the fan running. The outside unit does not stop operation.</td>
</tr>
<tr>
<td>P8</td>
<td>Close the valve A immediately, and restart the operation from procedure (3).</td>
</tr>
<tr>
<td>P2</td>
<td>Operation is interrupted. Close the valve A immediately and check the below items. • Check if HP/LP gas pipe, suction gas pipe or liquid pipe shutoff valve is opened. • Check the refrigerant tank is connected and the valve A was opened. • Check if the air inlet and outlet of the indoor unit are not closed by an obstruction. After correcting the abnormality, restart the operation from procedure (3).</td>
</tr>
<tr>
<td>P9</td>
<td>Charging is finished. Close the valve A and take the refrigerant tank off.</td>
</tr>
</tbody>
</table>

[Remote controller heating mode malfunction code]

<table>
<thead>
<tr>
<th>Code</th>
<th>The work contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>P8</td>
<td>Close the valve A immediately and push the TEST button (BS4) once. And restart from procedure (7) of “In case of heating mode”.</td>
</tr>
<tr>
<td>P2</td>
<td>Operation is interrupted. Close the valve A immediately and check the below items. • Check if HP/LP gas pipe, suction gas pipe or liquid pipe shutoff valve is opened. • Check the refrigerant tank is connected and the valve A was opened. • Check if the air inlet and outlet of the indoor unit are not closed by an obstruction.</td>
</tr>
</tbody>
</table>
6. After completing the additional refrigerant charging, record the charging amount on the accessory "REQUEST FOR THE INDICATON" label (Installation records) and adhere it to the back side of the front panel.

11-2-2 Procedure of check operation

- Check operation perform the following work. Do the check operation following below.
- Otherwise, malfunction code “U3” will be displayed in the remote controller and normal operation can not be carried out.
- ■ Check of shutoff valve opening
- ■ Check of miswiring
- ■ Judgment of piping length
- ■ Check of refrigerant overcharge

NOTE
- Check operation can not carried out at outdoor temp. less than 23°F. Perform the check operation at day or time that outdoor temp. is 23°F or more.

[Check Operation Procedure]

(1) Close the EL. COMPO. BOX lid and all front panels except as the side of the EL. COMPO. BOX and turn on the power to the outside unit and all connected BS, indoor units. (Be sure to turn the power on at least 6 hours before operation in order to have power running to the crank case heater.)

(2) Make the onsite settings as needed using the push button (BS1-BS5) on the outside unit PC-board (A1P) with the power on. (See “12 Onsite Settings”)

(3) Perform the check operation following the Check Operation Method of the [Service Precautions] label (lower) on the EL. COMPO. BOX lid. (See figure 31) The system operation for about 40–60 minutes and automatically stops the check operation.

If the malfunction code is not displayed in the remote controller after the system stop, check operation is completed. Normal operation will be possible after 5 minutes. If the malfunction code is displayed in the remote controller, correct the malfunction following [Remote controller displays malfunction code] and perform the check operation again.

(Refer to figure 31)

1. EL. COMPO. BOX (1) lid
2. EL. COMPO. BOX (2) lid
3. [Service Precaution] label (upper)
4. [Service Precaution] label (lower)

NOTE
For interrupting the check operation, push RETURN button (BS3).

[Remote controller displays malfunction code]

<table>
<thead>
<tr>
<th>Malfunction code</th>
<th>Installation error</th>
<th>Remedial action</th>
</tr>
</thead>
<tbody>
<tr>
<td>E3, E4, F3, F6, UF</td>
<td>The shutoff valve of the outside unit is left closed.</td>
<td>Open the shutoff valve.</td>
</tr>
<tr>
<td>U1</td>
<td>The phases of the power to the outside unit is reversed.</td>
<td>Exchange two of the three phases (L1, L2, L3) to make a proper connection.</td>
</tr>
<tr>
<td>U1</td>
<td>No power is supplied to an outside, BS or indoor unit (including phase interruption).</td>
<td>Make sure the power source wire is properly connected to the outside, BS or indoor unit and revise if necessary.</td>
</tr>
<tr>
<td>U1</td>
<td>There is conflict on the connection of transmission wiring in the system.</td>
<td>Check if the refrigerant piping line and the transmission wiring are consistent with each other.</td>
</tr>
<tr>
<td>E3, F6, UF</td>
<td>Refrigerant overcharge.</td>
<td>Recalculate the additional amount refrigerant from the piping length and correct the refrigerant charge level by recovering any excessive refrigerant with a refrigerant recovery machine.</td>
</tr>
<tr>
<td>E4, F3</td>
<td>Insufficient refrigerant.</td>
<td>• Check if the additional refrigerant charge has been finished correctly. • Recalculate the additional amount refrigerant from the piping length and add the adequate amount.</td>
</tr>
</tbody>
</table>

NOTE
If any malfunction codes other than the above are displayed, check the service manual for how to respond.

12. ONSITE SETTINGS

NOTE
In the case of a multi system, all onsite settings should be made on the master unit. Settings made on sub units are invalid. The outside unit to which the indoor unit transmission wire is connected is the master unit, and all other units are sub units.

Use the push button switches (BS1 through BS5) on the outside unit PC-board (A1P) to make the necessary onsite settings.

See the “Service Precautions” label (upper) on the EL. COMPO. BOX lid for details on the positions and operating method of the push button switches and on the onsite setting.

Make sure to record the setting on the accessory “REQUEST FOR THE INDICATON” label.

WARNING Electric Shock Warning

Use an insulated rod to operate the push buttons via the inspection door of EL. COMPO. BOX lid.
There is a risk of electric shock if you touch any live parts, since this operation must be performed with the power on.

13. TEST RUN

13-1 Before test run

- Make sure the following works are completed in accordance with the installation manual.
 - Piping work
 - Wiring work
 - Air tight test
 - Vacuum drying
 - Additional refrigerant charge
 - Check operation
 - Check that all work for the BS, indoor unit are finished and there are no danger to operate.

13-2 Test Run

After all works are completed, operate the unit normally and check the following.

(1) Make sure the indoor and outside units are operating normally.

(2) Operate each indoor unit one by one and make sure the corresponding outside unit is also operating.

(3) Check to see if cold (or hot) air is coming out from the indoor unit.

(4) Push the fan direction and strength buttons on the remote controller to see if they operate properly.

NOTE
- Heating is not possible if the outdoor temperature is 75°F or higher. Refer to the Operation manual.
- If a knocking sound can be heard in the liquid compression of the compressor, stop the unit immediately and then energize the crank case heater for a sufficient length of time before restarting the operation.
- Once stopping, the compressor will not restart in about 5 minutes even if the On/Off button of the remote controller is pushed.
- When the system operation is stopped by the remote controller, the outside units may continue operating for further 5 minutes at maximum.
- The outside unit fan may rotate at low speeds if the Night-time low noise setting or the External low noise level setting is made, but this is not a malfunction.
If the check operation was not performed at first installation, the malfunction code “U3” will be displayed in the remote controller. Perform the check operation following "11-2-2 Procedure of Check Operation".

13-3 Checks After Test Run
Perform the following checks after the test run is complete.
- Record the contents of field setting.
 → Record them on the accessory “REQUEST FOR THE INDICATION” label.
 And attach the label on the back side of the front panel.
- Record the installation date.
 → Record the installation date on the accessory “REQUEST FOR THE INDICATION” label in accordance with the IEC60335-2-40.
 And attach the label on the back side of the front panel.

--- NOTE ---
After the test run, when handing the unit over to the customer, make sure the EL.COMPO.BOX lid, the inspection door, and the unit casing are all attached.

14. CAUTION FOR REFRIGERANT LEAKS
(Point to note in connection with refrigerant leaks)
Introduction
The installer and system specialist shall secure safety against leakage according to local regulations or standards. The following standards may be applicable if local regulations are not available. The VRV System, like other air conditioning systems, uses R410A as refrigerant. R410A itself is an entirely safe non-toxic, non-combustible refrigerant. Nevertheless care must be taken to ensure that air conditioning facilities are installed in a room which is sufficiently large. This assures that the maximum concentration level of refrigerant gas is not exceeded, in the unlikely event of major leak in the system and this in accordance to the local applicable regulations and standards.

Maximum concentration level
The maximum charge of refrigerant and the calculation of the maximum concentration of refrigerant is directly related to the humanly occupied space in to which it could leak.
The unit of measurement of the concentration is lb/ft³ (the weight in lb of the refrigerant gas in 1 ft³ volume of the occupied space).
Compliance to the local applicable regulations and standards for the maximum allowable concentration level is required.

Procedure for checking maximum concentration
Check the maximum concentration level in accordance with steps 1 to 4 below and take whatever action is necessary to comply.
1. Calculate the amount of refrigerant (lb) charged to each system separately.
 amount of refrigerant + additional charging amount (amount of refrigerant added locally in accordance with the length or diameter of the refrigerant piping)

 total amount of refrigerant (lb) in the system

 2. Calculate the smallest room volume (ft³)
 Incase like the following, calculate the volume of (A), (B) as a single room or as the smallest room.
 A. Where there are no smaller room divisions
 B. Where there is a room division but there is an opening between the rooms sufficiently large to permit a free flow of air back and forth.

3. Calculating the refrigerant density using the results of the calculations in steps 1 and 2 above.
 total volume of refrigerant in the refrigerant system
 ____________________________ ≤ maximum concentration level (lb/ft³)
 size (ft³) of smallest room in which there is an indoor unit installed

 If the result of the above calculation exceeds the maximum concentration level then make similar calculations for the second then third smallest room and so until the result falls short of the maximum concentration.

4. Dealing with the situations where the result exceeds the maximum concentration level.
 Where the installation of a facility results in a concentration in excess of the maximum concentration level then it will be necessary to revise the system. Please consult your Daikin supplier.

Pay a special attention to the place, such as a basement, etc. where refrigerant can stay, since refrigerant is heavier than air.