INSTALLATION MANUAL

VRV IV-S System Air Conditioner

Installation manual
VRV IV-S System air conditioner

Manuel d’installation
Conditionneur d’air VRV IV-S System

Manual de instalación
Acondicionador de aire con sistema VRV IV-S
CONTENTS
1. SAFETY CONSIDERATIONS ... 1
2. INTRODUCTION .. 2
 2-1. Combination ... 3
 2-2. Standard operation limit ... 3
 2-3. Standard supplied accessories 3
 2-4. Option accessory .. 3
 3. BEFORE INSTALLATION ... 3
4. SELECTING INSTALLATION SITE 3
5. PRECAUTIONS ON INSTALLATION 5
6. FIELD WIRING ... 6
 6-1. Wiring connection example for whole system 6
 6-2. How to lay the power supply wiring and transmission wiring .. 6
 6-3. How to connect the power supply wiring 7
 6-4. Transmission wiring connection procedure 7
7. PRECAUTIONS ON REFRIGERANT PIPING 7
 7-1. Selecting piping material .. 8
 7-2. Protection against contamination when installing pipes 8
 7-3. Pipe connection ... 8
 7-4. Connecting the refrigerant piping 8
 7-5. Heat insulation of piping .. 9
 7-6. Example of connection .. 10
 7-7. Air tight test and vacuum drying 11
8. ADDITIONAL REFRIGERANT CHARGE 12
 8-1. Before adding refrigerant .. 12
 8-2. Checking the refrigerant tank 12
 8-3. Adding refrigerant .. 12
9. POST-WORK CHECKS .. 12
10. TEST RUN .. 12
 10-1. Power On–Check Operation 12
 10-2. Temperature control operation checklist 13
 10-3. Final charge adjustment 14
11. ENERGY SAVING AND OPTIMUM OPERATION 14
 11-1. Three main operation methods are available 14
 11-2. Several comfort settings are available 15
12. CAUTION FOR REFRIGERANT LEAKS 16
13. WIRING DIAGRAM .. 18

1. SAFETY CONSIDERATIONS

Read these “SAFETY CONSIDERATIONS for installation” carefully before installing air conditioning equipment. After completing the installation, make sure that the unit operates properly during the startup operation. Inform the customer on how to operate and maintain the unit. Inform customers that they should store this Installation Manual with the Operation Manual for future reference. Always use a licensed installer or contractor to install this product. Improper installation can result in water or refrigerant leakage, electrical shock, fire, or explosion.

Meanings of DANGER, WARNING, CAUTION, and NOTE Symbols:

⚠️ DANGER....Indicates an imminently hazardous situation which, if not avoided, will result in death or serious injury.

⚠️ WARNING....Indicates a potentially hazardous situation which, if not avoided, could result in death or serious injury.

⚠️ CAUTION.....Indicates a potentially hazardous situation which, if not avoided, may result in minor or moderate injury. It may also be used to alert against unsafe practices.

⚠️ NOTEIndicates situations that may result in equipment or property-damage accidents only.

⚠️ DANGER

- Refrigerant gas is heavier than air and replaces oxygen. A massive leak will result in oxygen depletion, especially in basements, and an asphyxiation hazard will result in serious injury or death.
- Do not grout units to water pipes, gas pipes, telephone wires, or lightning rods as incomplete grouting will result in a severe shock hazard resulting in severe injury or death.
- Additionally, grounding to gas pipes will result in a gas leak and potential explosion resulting in severe injury or death.
- If refrigerant gas leaks during installation, ventilate the area immediately. Refrigerant gas will result in producing toxic gas if it comes into contact with fire. Exposure to this gas will result in severe injury or death.
- After completing the installation work, check that the refrigerant gas does not leak throughout the system.
- Do not install unit in an area where flammable materials are present due to risk of explosions that will result in serious injury or death.
- Safely dispose all packing and transportation materials in accordance with federal/state/local laws or ordinances. Packing materials such as nails and other metal or wood parts, including plastic packing materials used for transportation will result in injuries or death by suffocation.

⚠️ WARNING

- Only qualified personnel must carry out the installation work. Installation must be done in accordance with this installation manual. Improper installation could result in water leakage, electric shock, or fire.
- When installing the unit in a small room, take measures to keep the refrigerant concentration from exceeding allowable safety limits. Excessive refrigerant leaks, in the event of an accident in a closed ambient space, could result in oxygen deficiency.
- Use only specified accessories and parts for installation work. Failure to use specified parts could result in water leakage, electric shocks, fire, or the unit failing.
- Install the air conditioner or heat pump on a foundation strong enough that it can withstand the weight of the unit. A foundation of insufficient strength could result in the unit failing and causing injuries.
- Take into account strong winds, typhoons, or earthquakes when installing. Improper installation could result in the unit failing and causing accidents.
- Make sure that a separate power supply circuit is provided for this unit and that all electrical work is carried out by qualified personnel according to local, state and national regulations. An insufficient power supply capacity or improper electrical construction could result in electric shocks or fire.
- Make sure that all wiring is secured, that specified wires are used, and that no external force acts on the terminal connections or wires. Improper connections or installation could result in fire.
- When wiring, position the wires so that the control box cover can be securely fastened. Improper positioning of the control box cover could result in electric shocks, fire, or the terminals overheating.
- Before touching electrical parts, turn off the unit.
- This equipment can be installed with a Ground-Fault Circuit Interrupter (GFCI). Although this is a recognized measure for
additional protection, with the grounding system in North America, a dedicated GFCI is not necessary.

- Securely fasten the unit terminal cover (panel). If the terminal cover/panel is not installed properly, dust or water may enter the outdoor unit and could result in fire or electric shock.
- When installing or relocating the system, keep the refrigerant circuit free from substances other than the specified refrigerant (R410A) such as air. Any presence of air or other foreign substance in the refrigerant circuit could result in abnormal pressure rise or rupture, resulting in injury.
- Do not change the setting of the protection devices. If the pressure switch, thermal switch, or other protection device is shorted and operated forcibly, or parts other than those specified by Daikin are used, fire or explosion could result.

--- CAUTION ---

- Do not touch the switch with wet fingers. Touching a switch with wet fingers may result in electric shock.
- Do not allow children to play on or around the unit or it may result in injury.
- The heat exchanger fins are sharp enough to cut, and may result in injury if improperly used. To avoid injury wear glove or cover the fins when working around them.
- Do not touch the refrigerant pipes during and immediately after operation as the refrigerant pipes may be hot or cold, depending on the condition of the refrigerant flowing through the refrigerant piping, compressor, and other refrigerant cycle parts. It may result in your hands getting burns or frostbite if you touch the refrigerant pipes.
- To avoid injury, give the pipes time to return to normal temperature or, if you must touch them, be sure to wear proper gloves.
- Install drain piping to proper drainage. Improper drain piping may result in water leakage and property damage.
- Insulate piping to prevent condensation.
- Be careful when transporting the product.
- Do not turn off the power immediately after stopping operation. Always wait for at least 5 minutes before turning off the power. Otherwise, water leakage may result.
- Do not use a charging cylinder. Using a charging cylinder may cause the refrigerant to deteriorate.
- Refrigerant R410A in the system must be kept clean, dry, and tight. (a) Clean and Dry - Foreign materials (including mineral oils such as SUNISO oil or moisture) should be prevented from getting into the system.
(b) Tight - R410A does not contain any chlorine, does not destroy the ozone layer, and does not reduce the earth’s protection against harmful ultraviolet radiation. R410A can contribute to the greenhouse effect if it is released. Therefore, take proper measures to check for the tightness of the refrigerant piping installation.

Read the chapter Refrigerant Piping and follow the procedures.

- Since R410A is a blend, the required additional refrigerant must be charged in its liquid state. If the refrigerant is charged in a state of gas, its composition can change and the system will not work properly.
- The indoor unit is for R410A. See the catalog for indoor models that can be connected. Normal operation is not possible when connected to other units.
- Remote controller (wireless kit) transmitting distance can be shorter than expected in rooms with electronic fluorescent lamps (Inverter or rapid start types). Install the indoor unit far away from fluorescent lamps as much as possible.
- Indoor units are for indoor installation only. Outdoor units can be installed either outdoors or indoors. This unit is for indoor use.
- Do not install the air conditioner or heat pump in the following locations:
(a) Where a mineral oil mist or oil spray or vapor is produced, for example, in a kitchen.
(b) Where corrosive gas, such as sulfuric acid gas, is produced. Corroding copper pipes or soldered parts may result in refrigerant leakage.
(c) Near machinery emitting electromagnetic waves. Electromagnetic waves may disturb the operation of the control system and cause the unit to malfunction.
(d) Where flammable gas may leak, where there is carbon fiber, or ignitable dust suspension in the air, or where volatile flammables such as thinner or gasoline are handled. Operating the unit in such conditions may result in a fire.
- Take adequate measures to prevent the outdoor unit from being used as a shelter by small animals. Small animals making contact with electrical parts may result in malfunctions, smoke, or fire. Instruct the customer to keep the area around the unit clean.

--- NOTE ---

- Install the power supply and transmission wires for the indoor and outdoor units at least 3.5 ft. (1 m) away from televisions or radios to prevent image interference or noise. Depending on the radio waves, a distance of 3.5 ft. (1 m) may not be sufficient to eliminate the noise.
- Dismantling the unit, treatment of the refrigerant, oil and additional parts must be done in accordance with the relevant local, state, and national regulations.
- Do not use the following tools that are used with conventional refrigerants: gauge manifold, charge hose, gas leak detector, reverse flow check valve, refrigerant charge base, vacuum gauge, or refrigerant recovery equipment.
- If the conventional refrigerant and refrigerator oil are mixed in R410A, the refrigerant result in deterioration.
- This air conditioner or heat pump is an appliance that should not be accessible to the general public.
- As design pressure is 478 psi (3.3 MPa), the wall thickness of field-installed pipes should be selected in accordance with the relevant local, state, and national regulations.

Codes and Regulations

This product is designed and manufactured to comply with national codes. Installation in accordance with such codes and/or prevailing local codes/regulations is the responsibility of the installer. The manufacturer assumes no responsibility for equipment installed in violation of any codes or regulations. Rated performance is achieved after 72 hours of operation.

2. INTRODUCTION

1. This series uses R410A refrigerant. Do absolutely sure to comply with "7. PRECAUTIONS ON REFRIGERANT PIPING", because even greater caution is needed to prevent impurities from entering R410A (mineral oils and water).
- The design pressure is 478psi (3.3MPa), which means that piping may be thicker than conventionally, so please refer to "7. PRECAUTIONS ON REFRIGERANT PIPING".
- This is a mixed refrigerant, so charge as a liquid when adding refrigerant. (If charged as a gas, the composition of the refrigerant may change, preventing normal operation.)
- The indoor unit must use R410A. See the catalog for indoor unit models which can be connected. (Normal operation is not possible when connected to other units.)
- The power supply of this series is single-phase, 208/230V, 60Hz.
2-1 Combination

The indoor units can be installed in the following range.
- Be sure to connect a dedicated indoor unit. See the catalog for indoor unit models which can be connected.
- Total capacity/quantity of indoor units
 (Outdoor unit) (Total capacity of indoor units) (Total quantity of indoor units)
 RXTQ35STAVJU .. 5.3-13.7 kW 6 units
 RXTQ36STAVJU .. 6.0-18.6 kW 8 units
 RXTQ48STAVJU .. 7.0-18.6 kW 8 units
 24.0-62.4 MBit

2-2 Standard operation limit

Normal operation

The figures below assume following operating conditions for indoor and outdoor units:
- Equivalent pipe length .. 25 ft. (7.6 m)
- Level difference .. 0 m

2-3 Standard supplied accessories

Make sure that the accessories shown below are all present.
(The accessories can be found behind the front panel.)

<table>
<thead>
<tr>
<th>Name</th>
<th>Operation manual</th>
<th>Clamp</th>
<th>Condenser mounting plate</th>
<th>Drain plug</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quantity</td>
<td>1</td>
<td>4 pcs.</td>
<td>2 pcs.</td>
<td>2 pcs.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Shape</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
</table>

2-4 Option accessory

- Refrigerant branching kit

Refer to figure 1)
1. Accessories
2. Screw for front panel
3. Front panel

3. BEFORE INSTALLATION

<Transporting the Unit>
As shown in figure 2, bring the unit slowly. (Take care not to let hands or things come in contact with rear fins.)

Refer to figure 2)
1. Air outlet grille
2. Intake hole
3. Corner
4. Outdoor unit
5. Handle
6. Front
7. Rear
8. Always hold the unit by the corners, as holding it by the side intake holes on the casing may cause them to deform.

Use only accessories and parts which are of the designated specification when installing.

4. SELECTING INSTALLATION SITE

(1) Select an installation site where the following conditions are satisfied and that meets with your customer's approval.
- Places which are well-ventilated.
- Places where the unit does not bother next-door neighbors.
- A locations where small animals will not make nests in the unit.
- Safe places which can withstand the unit's weight and vibration and where the unit can be installed level.
- A locations where there is enough space to install the unit.
- Places where the indoor and outdoor unit's piping and wiring lengths come within the allowable ranges.
- A location where there is no risk of flammable gas leaking.

(2) If the unit is installed in a location where it might be exposed to strong wind, install as per figure 3.
- 11 mph or higher winds blown against the outdoor unit's exhaust cause a deterioration in the system performance. High winds force re-circulation of the exhaust air into the inlet which are known to cause the following effects:
 - Reduction in performance.
 - Increased frost formation in heating mode.
 - System shut down due to increased pressures.
• If very strong wind blows continuously on the side of the outdoor unit with the outlet vent, the fan may turn in reverse at high speed and break, so install as per figure 3.

Refer to figure 3
1. Turn the air outlet side toward the building’s wall, fence or windbreak screen.
2. Air inlet grille
3. Ensure there is enough space for installing the unit.
4. Set the outlet side at a right angle to the direction of the wind.
5. Strong wind
6. Blown air

(3) When installing the unit in a place frequently exposed to snow, pay special attention to the following:
• Elevate the foundation as high as possible.
• Attach the snow hood (field supply).
• Remove the rear inlet grille to prevent snow from accumulating on the rear fins.

(4) The outdoor unit may short circuit depending on its environment, so use the louver (field supply).

(5) The refrigerant gas (R410A) is a safe, non-toxic and non-flammable gas, but if it leaks into the room, the concentration may exceed tolerance levels, especially in small rooms, so steps need to be taken to prevent refrigerant leakage. See the equipment design reference for details.

(6) Inverter-type air conditioners sometimes cause static in other electrical appliances. When selecting an installation location, make sure the air conditioner and all wiring are sufficiently far away from radios, computers, stereos, and other appliances, as shown in figure 4. Particularly for locations with weak reception, ensure there is a distance of at least 9.8 ft. for indoor remote controllers, place power supply wiring and transmission wiring in conduits, and ground the conduits. Use non-shielded wire for transmission wiring.

Refer to figure 4
1. Indoor unit
2. GFCI/Circuit Breaker
3. Remote controller
4. Personal computer or radio

(7) Space needed for installation

Precautions when installing units in series
• The direction for interunit piping is either forward or down when installing units in series, as shown in the figure (5–10).
• If the piping is brought out from the back, the outdoor unit will require at least 10 in. from its right side.

(7-1) **IN CASE OBSTACLES EXIST ONLY IN FRONT OF THE AIR INLET**

When nothing is obstructing the top
1. Installation of single unit
 • In case obstacles exist only in front of the air inlet (Refer to figure 5-11)
 • In case obstacles exist in front of the air inlet and on both sides of the unit (Refer to figure 5-12)
2. In case of installing multiple units (2 units or more) in lateral connection per row
 • In case obstacles exist in front of the air inlet and on both sides of the unit (Refer to figure 5-13)

When something is obstructing the top
1. Installation of single unit
 • In case obstacles exist only in front of the air inlet (Refer to figure 6-11)
 • In case obstacles exist in front of the air inlet and on both sides of the unit (Refer to figure 6-21)
2. In case of installing multiple units (2 units or more) in lateral connection per row
 • In case obstacles exist in front of the air inlet and on both sides of the unit (Refer to figure 6-31)

(7-2) **IN CASE OBSTACLES EXIST IN FRONT OF THE OUTLET SIDE**

When nothing is obstructing the top
1. Installation of single unit (Refer to figure 7-11)
2. In case of installing multiple units (2 units or more) in lateral connection per row (Refer to figure 7-21)

When something is obstructing the top
1. Installation of single unit (Refer to figure 7-31)
2. In case of installing multiple units (2 units or more) in lateral connection per row (Refer to figure 7-41)

(7-3) **IN CASE OBSTACLES EXIST IN FRONT OF BOTH THE AIR INLET AND OUTLET SIDES**

Pattern 1: Where obstacle in front of the air outlet is higher than the unit.
(There is no height limit for obstructions on the intake side.)

When nothing is obstructing the top
1. Installation of single unit (Refer to figure 8-11)
2. In case of installing multiple units (2 units or more) in lateral connection per row (Refer to figure 8-21)

When something is obstructing the top
1. Installation of single unit (Refer to figure 8-31)

Relation of dimensions of H, A, and L are shown in the table below.

<table>
<thead>
<tr>
<th>H ≤ L</th>
<th>L ≤ H</th>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0 ≤ L ≤ 1/2H</td>
<td>30(750)</td>
</tr>
<tr>
<td></td>
<td>1/2H ≤ L ≤ H</td>
<td>40(1000)</td>
</tr>
<tr>
<td>H < L</td>
<td>Set the frame to be L ≤ H</td>
<td></td>
</tr>
</tbody>
</table>

*Note:
Get the lower part of the frame sealed so that air from the outlet does not bypass.

2. Series installation (up to two units) (Refer to figure 8-41)

Relation of dimensions of H, A, and L are shown in the table below.

<table>
<thead>
<tr>
<th>H ≤ L</th>
<th>L ≤ H</th>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0 ≤ L ≤ 1/2H</td>
<td>40(1000)</td>
</tr>
<tr>
<td></td>
<td>1/2H ≤ L ≤ H</td>
<td>50(1250)</td>
</tr>
<tr>
<td>H < L</td>
<td>Set the frame to be L ≤ H</td>
<td></td>
</tr>
</tbody>
</table>

*Note:
1. Get the lower part of the frame sealed so that air from the outlet does not bypass.
2. Only two units at most can be installed in series.
Pattern 2: Where obstacles in front of the air outlet is lower than the unit.
(There is no height limit for obstructions on the intake side.)

When nothing is obstructing the top
1. Installation of single unit (Refer to figure 8-(5))
2. In case of installing multiple units (2 units or more) in lateral connection per row (Refer to figure 8-(6))
 Relation of dimensions of H, A, and L are shown in the table below.

<table>
<thead>
<tr>
<th>L</th>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 < L ≤ 1/2H</td>
<td>10(250)</td>
</tr>
<tr>
<td>1/2H < L ≤ H</td>
<td>12(300)</td>
</tr>
</tbody>
</table>

When something is obstructing the top
1. Installation of single unit (Refer to figure 8-(7))
 Relation of dimensions of H, A, and L are shown in the table below.

<table>
<thead>
<tr>
<th>L</th>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td>≤ H</td>
<td></td>
</tr>
<tr>
<td>0 < L ≤ 1/2H</td>
<td>4(100)</td>
</tr>
<tr>
<td>1/2H < L ≤ H</td>
<td>8(200)</td>
</tr>
</tbody>
</table>

H < L
Set the frame to be L ≤ H

Note:
Get the lower part of the frame sealed so that air from the outlet does not bypass.

2. Series installation (up to two units) (Refer to figure 8-(8))
 Relation of dimensions of H, A, and L are shown in the table below.

<table>
<thead>
<tr>
<th>L</th>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td>≤ H</td>
<td></td>
</tr>
<tr>
<td>0 < L ≤ 1/2H</td>
<td>10(250)</td>
</tr>
<tr>
<td>1/2H < L ≤ H</td>
<td>12(300)</td>
</tr>
</tbody>
</table>

H < L
Set the frame to be L ≤ H

Note:
1. Get the lower part of the frame sealed so that air from the outlet does not bypass.
 1. Only two units at most can be installed in series.

(7)-4 IN CASE OF STACKED INSTALLATION
1. In case obstacles exist in front of the outlet side (Refer to figure 9-(1))
 Note:
 1. No more than two units should be stacked.
 2. About 4in. is required as the dimension for laying the upper outdoor unit’s drain pipe.
 3. Shut off the Z part (the area between the upper outdoor unit and the lower outdoor unit) so that outlet air does not bypass.
2. In case obstacles exist in front of the air inlet (Refer to figure 9-(2))
 Note:
 1. No more than two units should be stacked.
 2. About 4in. is required as the dimension for laying the upper outdoor unit’s drain pipe.
 3. Shut off the Z part (the area between the upper outdoor unit and the lower outdoor unit) so that outlet air does not bypass.

(7)-5 IN CASE OF MULTIPLE-ROW INSTALLATION (FOR ROOF TOP USE, ETC.)
1. In case of installing one unit per row (Refer to figure 10-(1))
2. In case of installing multiple units (2 units or more) in lateral connection per row (Refer to figure 10-(2))
 Relation of dimensions of H, A, and L are shown in the table below.

<table>
<thead>
<tr>
<th>L</th>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td>≤ H</td>
<td></td>
</tr>
<tr>
<td>0 < L ≤ 1/2H</td>
<td>10(250)</td>
</tr>
<tr>
<td>1/2H < L ≤ H</td>
<td>12(300)</td>
</tr>
</tbody>
</table>

H < L
Installation impossible.

5. PRECAUTIONS ON INSTALLATION

- Install making sure the unit is level and the foundation is sturdy enough to prevent vibration noise.
- Fasten the unit in place using 4 foundation bolts M12. It is best to screw in the foundation bolt until their length remains 13/16 in (20 mm) above the foundation surface.

(Refer to figure 11)
1. Diagram of lower surface

<Drain pipe disposal>
- Locations where drainage from the outdoor unit might be a problem.
 In such locations, for example, where the drainage might drip onto passersby, lay the drain piping using the separately sold drain plug.
- When laying the drain, at least 4in.(100mm) from the bottom of the outdoor unit is needed.
- Make sure the drain works properly.
 (Watch out for water leaks if piping is brought out the bottom.)

(Refer to figure 12)
1. Drain plug (accessory)
2. 4 tabs
3. Drain receiver (accessory)
4. Insert the drain receiver as far as possible into the drain plug and hook the tabs.
5. Bottom frame drain hole
6. (1) Insert the drain plug through the drain hole in the bottom frame shown in figure 13.
 (2) Turn the drain plug along the guides until it stops (approx. 90°), and then attach the bottom frame.

7. Guide

(Refer to figure 13)
1. Air outlet side
2. Diagram of lower surface
3. Drain hole

[How to remove the transport clasp](RXTQ48-)
- A yellow transport clasp and washer are attached to the legs of the compressor to protect the unit during transportation, so remove them as shown in figure 14.

(Refer to figure 14)
1. Compressor
2. Securing nut
3. Transport clasp (Yellow)
4. Turn in the direction of the arrow and remove.
(1) Open the sound-proof cover as shown in figure 14.
(2) Do not pull the sound-proof cover or remove it from the compressor.
(3) Remove the securing nut.
(4) Remove the transport clasp as shown in figure 14.
(5) Retighten the securing nut.
(6) Return the sound-proof cover as it was.
6. FIELD WIRING

⚠️ CAUTION ⚠️

To the electrician
- Do not operate until refrigerant piping work is completed. (Failure to adhere to this caution may lead to irreparable compressor damage.)

6-1 Wiring connection example for whole system
- Electrical wiring work should be done by a certified professional.
- Follow the "Electrical wiring diagram face plate" when carrying out any electrical wiring.
- Always proceed with wiring work after blocking off all power.
- Make sure the ground resistance is no greater than 4Ω.
- Ground the indoor and outdoor units.
- Do not connect the ground wire to gas pipes, sewage pipes, lightning rods, or telephone ground wires.
- Gas pipes: can explode or catch fire if there is a gas leak.
- Sewage pipes: no grounding effect is possible if hard plastic piping is used.
- Telephone ground wires and lightning rods: dangerous when struck by lightning due to abnormal rise in electrical potential in the grounding.
- Use copper wire.
- When doing the electrical wiring, always shut off the power source before working, and do not turn on the switch until all work is complete.
- This unit has an inverter, so it must be grounded in order to reduce noise and prevent it from affecting other appliances, and also to release any electrical build-up in the unit case due to leaked current.
- Do not install a power-factor improving phase-advancing capacitor under any circumstances. (Not only will this not improve the power factor, but it might cause a fire.)
- Connect the wire securely using designated wire and fix it with attached clamp without applying external pressure on the terminal part (terminal for power wiring, terminal for transmission wiring and earth terminal). See "6-3 How to connect the power supply wiring".
- Left-over wiring should not be wrapped and stuffed into the unit.
- To prevent the power wiring from being damaged by the knock hole edges, put it in a wiring pipe or plastic tube to protect it.
- Secure the wiring with the included clamp so that it does not come in contact with the piping or stop valve. (See "6-3 How to connect the power supply wiring").

⚠️ CAUTION ⚠️

- Use a power wire pipe for the power supply wiring.
- Outside the unit, make sure the weak electric wiring (i.e. for the remote controller cord, between units, etc.) and the strong electric wiring do not pass near each other, keeping them at least 2in.(50mm) apart. Proximity may cause electrical interference, malfunctions, and breakage.
- Be sure to connect the power wiring to the power wiring terminal block and secure it as described in "6-3 How to connect the power supply wiring".
- Transmission wiring should be secured as described in "6-4 Transmission wiring connection procedure".
- Secure wiring with clamp (accessory) to avoid contact with piping.
- Make sure the wiring and the front panel do not stick up above the structure, and close the cover firmly.

(Refer to figure 15)
1. Circuit Breaker/GFCI
2. Power supply
3. Outdoor unit

4. 16V
5. 208/230V
6. Indoor unit
7. Remote controller
8. Ground wire

6-2 How to lay the power supply wiring and transmission wiring
Let the power supply wiring and transmission wiring with a conduit pass through one of the knockout holes on the front or side cover, and let the transmission wiring with a conduit pass through another knockout hole.
- For protection from uninsulated live parts, thread the power supply wiring and the transmission wiring through the included insulation tube and secure it with the included clamp.

<Power supply wiring>

Insulation tube (accessory) Clamp (accessory) Power supply wiring
Ground wire 3in.(75mm) 5/8in.(15.9mm)

2in.(50mm) or more

<Transmission wiring>

Insulation tube (accessory) Clamp (accessory) Transmission wiring

3in.(75mm)

Precautions knock out holes
- Open the knock holes with a hammer or the like.
- After knocking out the holes, we recommend you remove burrs in the knock holes and paint the edges and areas around the edges using the repair paint to prevent rusting.
- When passing wiring through knock holes, make sure there are no burrs, and protect the wiring with protective tape.

(Refer to figure 16)
1. Stop valve attachment plate
2. Power supply wiring (including ground wire) or transmission wiring
3. Back of unit
4. Knockout hole
5. Side of unit
6. Front of unit
7. Terminal block
8. Control Box

If small animals might enter the unit, block the knock holes with an appropriate material (field supply).
6-4 Transmission wiring connection procedure

- Between indoor units in the same system, pass the wiring between the units as shown in figure 18. (There is no polarity.)

(Refer to figure 18)
1. Terminal block (X2M)
2. Use balance type shield wire (with no polarity).
3. Indoor unit
4. Under no circumstances should 208/230V be connected.

Precautions regarding the length of wiring between units
Exceeding the following limits may cause transmission malfunctions, so observe them.
Max. wiring length: Max. 984ft (300m)
Total wiring length: Max. 1968ft (600m)
Max. no. of branches: 8

Precautions regarding wiring between units
- Do not connect 208/230V power wiring to terminals for the transmission wiring. Doing so would destroy the entire system.
- Wiring to the indoor unit should be wired to F1 and F2 (TO IN/D unit) on the outdoor unit's terminal block (X2M).

NOTE
- The above wiring should be wired using AWG 18-16 stranded, non-shielded wiring. (See figure 18 for how to ground the shielded parts.)
- All transmission wiring is to be procured on site.

--- CAUTION ---
Up to 8 branches are available in the wiring among units. Branch after branch cannot perform wiring between units.

(Refer to figure 19)
1. Branch
2. Branches after branch points
3. Caution on branches in the wiring among units

7. PRECAUTIONS ON REFRIGERANT PIPING
- Do not allow anything other than the designated refrigerant to get mixed into the refrigerant cycle, such as air, nitrogen, etc. If any refrigerant gas leaks while working on the unit, ventilate the room thoroughly right away.
- Use R410A only when adding refrigerant.
- Installation tools:
 - Make sure to use installation tools (gauge manifold, charge hose, etc.) that are exclusively used for R410A installations to withstand the pressure and to prevent foreign materials (e.g., mineral oils and moisture) frommixing into the system.
- Vacuum pump:
 - Use a 2-stage vacuum pump with a non-return valve.
 - Make sure the pump oil does not flow oppositely into the system while the pump is not working.
 - Use a vacuum pump which can evacuate to 500 microns.
7-1 Selecting piping material

CAUTION

Piping and other pressure containing parts shall comply with the applicable legislation and shall be suitable for refrigerant. Use phosphoric acid dezoxidized seamless copper for refrigerant.

CAUTION

- All field piping must be installed by a licensed refrigeration technician and must comply with relevant local and national regulations.
- After piping work is complete, do not under any circumstances open the stop valve until 6. Field wiring on page 6 and 9. Post-work checks on page 12 are complete.
- Do not use flux when brazing the refrigerant piping. Use the phosphor copper brazing filler metal (B-Cu93P-710/795:ISO 3677) which does not require flux. Flux has extremely negative effect on refrigerant piping systems. For instance, if the chlorine based flux is used, it will cause pipe corrosion or, in particular, if the flux contains fluorine, it will damage the refrigerant oil.
- Use only pipes which are clean inside and outside and which do not accumulate harmful sulfur, oxidants, dirt, cutting oils, moisture, or other contamination. (Foreign materials inside pipes including oils for fabrication must be 0.14 gr/10 ft. (30 mg/10 m) or less.)
- Use the following items for the refrigerant piping.
 - **Material:** Jointless phosphor dezoxidized copper pipe.
 - **Size:** See 7-4: Example of connection.
 - **Thickness:** Select a thickness for the refrigerant piping which complies with national and local laws.
- Install the refrigerant branch kit while observing the following condition and referring to the installation manual offered as an accessory of the kit.

(Refer to figure 20)

1. Install the REFNET joint so it splits horizontally or vertically.
2. Horizontal surface
3. A-arrow view
4. ≤30° or less
5. Level
6. Vertical is also OK
7. Install the REFNET header so that it splits horizontally.
8. B-arrow view

7-2 Protection against contamination when installing pipes

- Wrap the piping to prevent moisture, dirt, dust, etc. from entering the piping.
- Exercise caution when passing copper piping through the through-holes and when passing them out to the outside.

<table>
<thead>
<tr>
<th>Place</th>
<th>Installation</th>
<th>Protection method</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>More than a month</td>
<td>Pinch the pipe</td>
</tr>
<tr>
<td>-</td>
<td>Less than a month</td>
<td>Pinch or tape the pipe</td>
</tr>
<tr>
<td>-</td>
<td>Regardless of the period</td>
<td>Pinch or tape the pipe</td>
</tr>
</tbody>
</table>

7-3 Pipe connection

- See "Stop valve operation procedure" in "7-7 Air tight test and vacuum drying" regarding handling of the stop valve.
- Only use the flare nuts included with the unit. Using different flare nuts may cause the refrigerant to leak.
- Be sure to perform a nitrogen blow when brazing.
 (Brazing without performing nitrogen replacement or releasing nitrogen into the piping will create large quantities of oxidized film on the inside of the pipes, adversely affecting valves and compressors in the refrigerating system and preventing normal operation.)

(Refer to figure 21)

1. Refrigerant pipe
2. Location to be brazed
3. Regulator
4. Nitrogen
5. Manual valve
6. Taping

7-4 Connecting the refrigerant piping

- The local interunit piping is connectable in four directions.

(Refer to figure 22)

1. Front panel
2. Pipe outlet panel
3. Backward
4. Sideways
5. Downward
6. Pipe outlet panel screw
7. Forward
8. Screw for front panel

- When connecting the pipe downward, remove the knockout by making four holes in the middle on the each side of the knockout with a drill.

(Refer to figure 23)

1. Drill
2. Center area around knockout hole
3. Knockout hole
4. Slot

- After knocking out the knock-out, it is recommended to apply repair paint to the edge and the surrounding end surfaces to prevent rusting.

(Refer to figure 24)

1. Bottom frame
2. Interunit piping

NOTE
Cutting out the two slits makes it possible to install as shown in figure 24. (Use a metal saw to cut out the slits.)

Precautions when connecting pipes

- Please refer to the Table 1 for the dimensions for processing flares.
- When connecting the flare nut, coat the flare both inside and outside with refrigerating machine oil and initially tighten by hand 3 or 4 turns before tightening firmly.
- Please refer to the Table 1 for the tightening torque. (Too much tightening will end up in splitting of the flare.)

<table>
<thead>
<tr>
<th>Pipe size (in.)</th>
<th>Flare shape (in.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>φ 3/8" (9.5mm)</td>
<td>24.1–29.4 (32.7–39.9N·m) 0.504–0.520 (12.8–13.2mm)</td>
</tr>
<tr>
<td>φ 5/8" (15.9mm)</td>
<td>45.5–55.6 (61.8–75.4N·m) 0.760–0.776 (19.3–19.7mm)</td>
</tr>
<tr>
<td>φ 3/4" (19.1mm)</td>
<td>71.7–87.5 (91.2–118.0N·m) 0.929–0.945 (23.5–24.9mm)</td>
</tr>
</tbody>
</table>

<Figure 21>

<Figure 22>

<Figure 23>

<Figure 24>
• If a torque wrench is not available, there is a place where the tightening torque will suddenly increase if a normal wrench is used to tighten the flare nut. From that position, further tighten the flare nut the angle shown below.

<table>
<thead>
<tr>
<th>Pipe size</th>
<th>Further tightening angle</th>
<th>Recommended arm length of tool (in.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>φ3/8" (9.5mm)</td>
<td>60° – 90°</td>
<td>Approx. 7 7/8 (200mm)</td>
</tr>
<tr>
<td>φ5/8" (15.9mm)</td>
<td>30° – 60°</td>
<td>Approx. 11 13/16 (300mm)</td>
</tr>
<tr>
<td>φ3/4" (19.1mm)</td>
<td>20° – 35°</td>
<td>Approx. 17 11/16 (450mm)</td>
</tr>
</tbody>
</table>

• After all the piping has been connected, use nitrogen to perform a gas leak check.

Precautions for connecting pipes

• Be careful not to let the interunit piping come into contact with the compressor terminal cover. Adjust the height of the insulation material on liquid pipe when it has the possibility of getting in contact with the terminal. Also make sure that the interunit piping does not touch the mounting bolt of the compressor.

(Refer to figure 25)
1. Compressor
2. Circuit, etc.
3. Insulation material
4. Bolts
5. Interunit piping

• If installing the outdoor unit higher than the indoor unit, caulk the space around insulation and tubes because condensation on the check valve can seep through to the indoor unit side.

[Preventing foreign objects from entering]

• Plug the pipe through-holes with putty or insulating material (pro cured locally) to stop up all gaps, as shown in figure 26. (Figure 26 indicates the forward case. Do the same in case of other directions.) Insects or small animals entering the outdoor unit may cause a short in the control box.

(Refer to figure 26)
1. Putty or insulating material
2. (field supply)

7-5 Heat Insulation of piping

• Highly recommended to insulate the interunit piping (liquid and gas-side) and the refrigerant branch kit. (Not insulating them may cause leaking.)

• The insulation dimension is recommended as following:

<table>
<thead>
<tr>
<th>Ambient temperature: 86°F (30°C), humidity : Below 80% RH</th>
<th>Ambient temperature: 86°F (30°C), humidity : 80% RH and above</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum thickness : 9/16 inch (15mm)</td>
<td>Minimum thickness : 3/4 inch (20mm)</td>
</tr>
</tbody>
</table>

• When using commercial copper pipes and fittings, observe the following:

a) Insulation of pipes should be done after performing air tight test and vacuum drying on page 11.

b) Heat transfer rate: 0.041 to 0.052W/Mk (0.024 to 0.030Btu/h/ft²°F (0.035 to 0.045kcal/m²h°C)).

c) Be sure to use insulation that is designed for use with HVAC Systems.

d) The highest temperature that the gas-side piping can reach is around 248°F(120°C), so be sure to use insulating material which is very resistant.
(The highest temperature that the gas-side piping can reach is around 248°F(120°C), so be sure to use insulating material which is very resistant.)

⚠️ CAUTION

For local insulation, be sure to insulate all the way to the pipe connections inside the machine.
Exposed piping may cause leaking or burns on contact.
Example of connection

Connection of 8 indoor units

Heat pump system

Refrigerant branch kit selection

- **Refrigerant branch kit name**
 - RXTO36.48 type
 - KHRP2B2279

- **Outdoor unit capacity type**
 - RXTO36.48 type
 - KHRP2B2279

- **Refrigerant branch kit name**
 - KHRP2B2279 (Max. 4 branches)
 - KHRP2B2279 (Max. 6 branches)

Pipe size selection

- **(Cautions on selecting connection pipes)**
 - When the equivalent piping length between the outdoor unit and the indoor unit is ≥ 250 m or more, make sure to use a thicker pipe as the main pipe on the gas side.
 - When the air-conditioning ability is reduced due to the refrigerant piping distance, a thicker pipe may be used also as the main pipe.

Piping between outdoor unit and refrigerant branch kit

- **Outdoor unit connection pipe size**
 - Unit: m

Piping between refrigerant branch kits

- **Piping size (outer diameter) - Gas pipe**
 - 6.5/8" (15.9 mm)

How to calculate the additional refrigerant to be charged

Additional refrigerant to be charged R (lbs/kg)

R should be rounded off in units of 0.18 (lbs/kg)
7-7 Air tight test and vacuum drying

After doing the piping, perform the following inspections.

Air tight test

Be sure to use nitrogen gas. (See the figure ("Stop valve operation procedure") for the location of the service port.)

[Procedure]

Pressurize from the liquid pipes and gas pipes to 550psi(4.0MPa) (and not above 550psi(4.0MPa)). If there is no pressure drop over the next 24 hours, the equipment has passed the test.

If the pressure drops, check for leakage positions. (Confirm that there is no leakage, then release nitrogen.)

If a FX70Q indoor unit is used, only pressurize to 450psi(3.1MPa)

Vacuum drying

Use a vacuum pump that can create a vacuum down to at least 500 microns.

[Procedure]

Operate the vacuum pump for at least 2 hours from both the liquid and gas pipes and decrease the pressure to at least 500 microns. Leave at below 500 microns for at least 1 hour and make sure that the vacuum gauge does not rise. (If it does rise, there is either still moisture in the system or a leak.)

Cases where moisture might enter the piping (i.e., if doing work during the rainy season, if the actual work takes long enough that condensation may form on the inside of the pipes, if rain might enter the pipes during work, etc.)

After performing the vacuum drying for 2 hours, pressurize to 7.2psi(0.05MPa) (i.e., vacuum breakdown) with nitrogen gas, then depressurize down to at least 500 microns for an hour using the vacuum pump (vacuum drying). (If the pressure does not reach at least 500 microns even after depressurizing for at least 2 hours, repeat the vacuum breakdown - vacuum drying process.) Leave as a vacuum for 1 hour after that, and make sure the vacuum gauge does not rise.

(Refer to figure 27)

1. Decompression valve
2. Nitrogen
3. Vacuum pump
4. Valve (Open)
5. Charge hose
6. Stop valve service port
7. Indoor unit
8. Gas line stop valve (Close)
9. Liquid line stop valve (Close)
10. Indicates local procurement
11. Outdoor unit

NOTE

The stop valve must always be turned to "closed". Otherwise the refrigerant in the outdoor unit will pour out.

Stop valve operation procedure

Precautions when handling the stop valve

- The names of parts needed to operate the stop valve are shown in the figure below. The unit is shipped from the factory with the stop valve turned to the "closed" position.

Servicing port

Valve bar

Valve lid

Interunit piping connection

- Since the side boards may be deformed if only a torque wrench is used when loosening or tightening flare nuts, always lock the stop valve with a wrench and then use a torque wrench.
- In cases where the unit is run in heating mode when the outside temperature is low or in other situations where the operating pressure might drop, seal the gas-side flare nut on the stop valve with silicon sealant or the like to prevent it from freezing.

Stop valve operation procedure

Have a hex wrench ready (size: 0.2in.(4mm) and 0.3in.(6mm)).

Opening the valve

1. Place the hex wrench on the valve bar and turn counter-clockwise.
2. Stop when the valve bar no longer turns. It is now open.

Closing the valve

1. Place the hex wrench on the valve bar and turn clockwise.
2. Stop when the valve bar no longer turns. It is now closed.

Precautions for handling valve lid

- A seal is attached to the point indicated by the arrow. Take care not to damage it.

Valve lid

Stop valve (lid attachment)

- Be sure to tighten the valve lid securely after operating the valves.

Liquid-side tightening torque: 10.0 – 12.2 ft-lbf
Gas-side tightening torque: 16.6 – 20.3 ft-lbf
13.5 – 16.5 Nm
22.5 – 27.5 Nm

Precautions for handling servicing port

- Use a push-rod-provided charging hose for operation.
- Be sure to tighten the valve lid securely after operation.

Tightening torque: 8.5 – 10.3 ft-lbf (10.8 – 14.7 Nm)
8. ADDITIONAL REFRIGERANT CHARGE

WARNING

- When leaving the unit with the power on, be sure to switch with another person doing the installation or close the front panel.

8-1 Before adding refrigerant

- Make sure the following work and inspection is complete, in accordance with the installation manual.
- Piping
- Wiring
- Airtightness test, Vacuum drying

8-3 Adding refrigerant

Filling after calculating the amount of refrigerant to add

1. Calculate the amount of refrigerant to add as described in “Calculating the amount of refrigerant to add” in “7. PRECAUTIONS ON REFRIGERANT PIPING”.
2. After the vacuum drying is finished, open valve A and charge the calculated amount of refrigerant through the service port for the liquid-side stop valve.
3. Close valve A after charging is complete.

If all the refrigerant could not be added

Add refrigerant using the following procedure. See the “Service Precautions” plate attached to the outdoor unit for details on the settings for adding refrigerant.

8-2 Checking the refrigerant tank

- Check whether the tank has a siphon pipe before charging and place the tank so that the refrigerant is charged in liquid form. (See the figure below.)

<table>
<thead>
<tr>
<th>Tank with siphon pipe</th>
<th>Other tanks</th>
</tr>
</thead>
<tbody>
<tr>
<td>There is a siphon pipe inside, so the cylinder need not be upside-down to fill with liquid. (Stand the cylinder upright when filling.)</td>
<td>Stand the tank upside down and charge.</td>
</tr>
</tbody>
</table>

9. POST-WORK CHECKS

Perform the following checks after work is complete.

1. Drain pipe connection, removal of transport clamp → See “5. PRECAUTIONS ON INSTALLATION”.
2. Incorrect power supply wiring, loose screws → See “6-3 How to connect the power supply wiring”.
3. Incorrect transmission wiring, loose screws → See “6-4 Transmission wiring connection procedure”.
4. Incorrect refrigerant piping connections → See “7. PRECAUTIONS ON REFRIGERANT PIPING”.
5. Piping sizes, use of insulation → See “7-1 Selecting piping material”.
7. Stop valve check → Make sure both the liquid-side and gas-side stop valves are open.
8. Record Amount of Refrigerant Added → Record II on “Record Amount of Refrigerant Added” on the “Service Precautions” plate.
9. Measuring the insulation of the main power circuit →
 - Use a 500V mega-tester.
 - Do not use the mega-tester for weak currents other than 208/230V. (Transmission wiring)

WARNING

CAUTION

To the pipe-layer

After completing installation, be sure to open the valve.
(Operating the unit with the valve shut will break the compressor.)

10. TEST RUN

This unit is equipped with a crank case heater to ensure smooth startup. Be sure to turn the power on at least 6 hours before operation in order to have power running to the crank case heater.

WARNING

When leaving the unit with the power on, be sure to switch with another person doing the installation or close the front panel.

Precautions before turning the power on

- Using insulating sheets, tape electric parts as described in the “Service Precautions” plate on the back of the front panel.
- All indoor units connected to the outdoor unit operate automatically. Complete work on the indoor units in order to ensure maximum safety.

10-1 Power On–Check Operation

- Make sure to perform the check operation after installation.
- When making settings on the outdoor unit PC board (A1P) after turning the power on, do not touch anything other than the push-button switches and dip switches. (See the “Service Precautions” plate for the locations of the push-button switches (BS1-5) and dip switches (D1-1, 2) on the PC board (A1P).)
During the operation, monitor the outdoor unit operation status and check for any incorrect wiring.

1. Close the outdoor unit’s front panel. Turn the power on for the outdoor unit and the indoor unit.

Caution Be sure to turn the power on at least 6 hours before operation in order to have power running to the cabinet heater.

2. Open the outdoor unit’s front panel. Make sure the LED display on the outdoor unit’s PC boards (AIP) are as shown in the following chart.

<table>
<thead>
<tr>
<th>AIP</th>
<th>MAP</th>
<th>HTP</th>
<th>HDP</th>
<th>MAP</th>
<th>HTP</th>
<th>HDP</th>
</tr>
</thead>
<tbody>
<tr>
<td>LED display (Default status before delivery)</td>
<td>→</td>
<td>×</td>
<td>×</td>
<td>→</td>
<td>×</td>
<td>×</td>
</tr>
</tbody>
</table>

LED display: Off — ON — Blinking

To avoid the risk of electric shock, do not touch anything other than the push button switches on the PC board (AIP) when making settings.

3. When the customer requests quiet operation or demand operation, make these settings using the push-button switches (BS1-5) on the outdoor unit’s PC board (AIP).

- Operate the push button switches through the opening after protecting it with an insulation cover.

(See the “Service Precautions” plate for details.)

Caution Use caution to avoid electrical shock while working, since the outdoor unit is on.

- Only set the push-button switches (BS1-5) after making sure the microcomputer OK monitor is lit up.
- See the “Service Precautions” plate on the front panel of the outdoor unit for details on how to make the settings.
- Do not forget to write the settings down on the “Service Precautions” plate.
- The dip switch (DS1-1) does not need to be set, so do not touch it.
- Do nothing as this may cause malfunction.

4. Check that the liquid and gas-side stop valves are open, and if they are closed, open them.

Caution Do not leave any stop valve closed otherwise the compressor will fail.

5. Press the test run button (BS4) for at least five seconds and perform check operation.

For details, see “How to perform check operation” on the “Service Precautions” plate.

- If you have to leave the outdoor unit & doing check operation, other switch with another worker or close the front panel.
- The system operates for about 30 minutes (20 minutes at main unit) automatically stops the check operation.
- The system can start normal operation about 3 minutes after the check operation if the remote controller does not display any error code.
- The remote controller will show the test run display during check operation.

6. Close the outer panel of the outdoor unit after check operation is complete.

<Precautions During Check Operation>

- If operation is performed within 12 minutes of the indoor and outdoor units being turned on, H2P will light up, and the compressor will not run.

Only perform operation after checking that the LED display is as shown in “10-1 Power On—Check Operation” 2 table.

- In order to ensure uniform refrigerant distribution, it may take up to around 10 minutes for the compressor to begin running after the unit begins running. This is not a malfunction.
- Each indoor unit cannot be checked individually for problems. After this operation is complete, run the unit normally using the remote controller.
- The check run cannot be performed in recovery or other modes.
- If the outlet pipe thermistor (R2T), the intake pipe thermistor (R3T), and the pressure sensors (S1NPH and S1NPPL) are removed before operation, the compressor might burn out, so avoid this under all circumstances.

10-2 Temperature control operation checklist

[Set the master unit (the indoor unit with rights of selection cooling or heating)]

<With a wired remote controller>

- After check operation is complete, displays of all the connected remote controllers will flash “Switching mode”.
- Ask the customer which indoor unit to set as the master unit. (Setting the most frequently used indoor unit as the master unit is recommended.)
- Press the mode-switch button on the remote controller for the master unit.
- That remote controller will then become the remote controller for switching between cooling and heating.
- All other remote controllers will display “Switching mode”.

<With wireless remote controller>

- After check operation is complete, all the timer lamps on all the indoor units which are connected will flash.
- Ask the customer which indoor unit to set as the master unit. (Setting the most frequently used indoor unit as the parent unit is recommended.)
- Press the mode-switch button on the remote controller for the master unit.
- A beeping sound will be emitted and the timer lamps on all the indoor units will go off.
- That indoor unit will be the indoor unit which has the right to switch between cooling and heating.
- Details, see the operation manual which comes with the unit.

- After check operation is complete, checking the temperature control using normal operation.

(Heating is not possible if the outdoor temperature is 75°F(24°C) or higher. See the included operation manual.)

1) Make sure the indoor and outdoor units are operating normally.
(If liquid compression by the compressor or other abnormal noises can be heard, stop the unit immediately, heat the crank case for a sufficient amount of time, and try again.)
2) Run each indoor unit one at a time and make sure the corresponding outdoor unit is also running.
3) Check to see if cold (or hot) air is coming out of the indoor unit.
4) Press the fan direction and fan strength buttons on the indoor unit to see if they operate properly.

<Precautions during temperature control checks>

- For around 5 minutes after the compressor stops, the compressor will not run even if the “operate/stop” button on the remote controller is pressed.
- When the system operation is stopped by the remote controller, the outdoor units may continue operating for further 1 minutes at maximum.
- If a malfunction code “U3” is displayed if check operation is not performed using the test run button the first time after installation. Perform the check operation in accordance with “10-1 Power On—Check Operation”.

English 13
10-3 Final charge adjustment

It is not necessary to do this final adjustment normally, but perform the following operation only when the most adequate refrigerant charge for the best performance is required and the piping length between the outdoor and indoor units is less than 50ft (15m).

The outdoor temperature must be between 60°F (16°C) and 97°F (36°C). Run the system for 30 minutes in cooling by the forced operation using the field setting mode 2, No. 6 (value 0: OFF, 1: ON) (Refer to Service Manual) to allow pressures to stabilize.

Check subcooling of outdoor unit at LSV. Systems should have the target subcooling in the table below.

a. If the subcooling is low, add charge to raise subcooling to the target value. (The maximum additional charge is 2.2 lbs. (1kg))

b. If the subcooling is high, remove charge to lower the subcooling to the target value.

<table>
<thead>
<tr>
<th>Model</th>
<th>Target subcooling</th>
</tr>
</thead>
<tbody>
<tr>
<td>RXTQ36-</td>
<td>2±1°F (1.1±0.56°C)</td>
</tr>
<tr>
<td>RXTQ48-</td>
<td>12±1°F (6.67±0.56°C)</td>
</tr>
</tbody>
</table>

11. ENERGY SAVING AND OPTIMUM OPERATION

RXTQ- units are equipped with advanced energy saving functionality. Depending on the priority, emphasis can be put on energy saving or comfort level. Several parameters can be selected, resulting in the optimal balance between energy consumption and comfort for the particular application.

Several patterns are available and explained below. Modify the parameters to the needs of your building and to realize the best balance between energy consumption and comfort.

Refer to Service Manual for changing the field settings.

Setting definition: [A-B]-C, A-mode, B-setting NO, C-setting value.

11-1 Three main operation methods are available:

- **Basic**
 - The refrigerant temperature is fixed independent from the situation. It corresponds to the standard operation which is known and can be expected from/under previous VRV systems:
 - To activate this operation method under cooling operation: change field setting [2-8]=2.
 - To activate this operation method under heating operation: change field setting [2-9]=2.

- **Automatic (default)**
 - The refrigerant temperature is set depending on the outdoor ambient conditions. As such adjusting the refrigerant temperature to match the required load (which is also related to the outdoor ambient conditions).
 - E.g., when your system is operating in cooling, you do not need as much cooling under low outdoor ambient temperatures (e.g., 77°F (25°C) as under high outdoor ambient temperatures (e.g., 95°F (35°C)).
 - Using this idea, the system automatically starts increasing its refrigerant temperature, automatically reducing the delivered capacity and increasing the system’s efficiency.
 - To activate this operation method under cooling operation: change field setting [2-8]=3 (default).
 - E.g., when your system is operating in heating, you do not need as much heating under high outdoor ambient temperatures (e.g., 59°F (15°C) as under low outdoor ambient temperatures (e.g., 23°F (−5°C)).
 - Using this idea, the system automatically starts decreasing its refrigerant temperature, automatically reducing the delivered capacity and increasing the system’s efficiency.
 - To activate this operation method under heating operation: change field setting [2-9]=1 (default).
Hi-sensible (cooling)
The refrigerant temperature is set higher (cooling) compared to basic operation. The focus under high sensible mode is improved comfort for the customer. The selection method of indoor units is important and has to be considered as the available capacity is not the same as under basic operation. For details concerning to Hi-sensible applications, please contact your dealer.
- To activate this setting under cooling operation: change field setting [2-8] to the appropriate value, matching the requirements of the pre-designed system containing a high sensible solution.

<table>
<thead>
<tr>
<th>Value</th>
<th>To target</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>46°F(8°C)</td>
</tr>
<tr>
<td>5</td>
<td>48°F(9°C)</td>
</tr>
<tr>
<td>6</td>
<td>50°F(10°C)</td>
</tr>
<tr>
<td>7</td>
<td>52°F(11°C)</td>
</tr>
</tbody>
</table>

11-2 Several comfort settings are available
For each of above modes a comfort level can be selected. The comfort level is related to the timing and the effort (energy consumption) which is put in achieving a certain room temperature by temporarily changing the refrigerant temperature to different values in order to achieve requested conditions more quickly.

- Powerful
 Overshoot (during heating operation) or undershoot (during cooling operation) is allowed compared to the requested refrigerant temperature, in order to achieve the required room temperature very fast. The overshoot is allowed from the start up moment.
 In case of cooling operation the evaporating temperature is allowed to go down to 37°F (3°C) on temporary base depending on the situation.
 In case of heating operation the condense temperature is allowed to go up to 120°F (49°C) on temporary base depending on the situation.
 When the request from the indoor units becomes more moderate, the system will eventually go to the steady state condition which is defined by the operation method above.
 - To activate the powerful comfort setting under cooling operation, change field setting [2-41]=3.
 This setting is used in conjunction with setting [2-8].
 - To activate the powerful comfort setting under heating operation, change field setting [2-42]=3.
 This setting is used in conjunction with setting [2-9].

- Quick
 Overshoot (during heating operation) or undershoot (during cooling operation) is allowed compared to the requested refrigerant temperature, in order to achieve the required room temperature very fast. The overshoot is allowed from the start up moment.
 In case of cooling operation the evaporating temperature is allowed to go down to 43°F (6°C) on temporary base depending on the situation.
 In case of heating operation the condense temperature is allowed to go up to 115°F (46°C) on temporary base depending on the situation.
 When the request from the indoor units becomes more moderate, the system will eventually go to the steady state condition which is defined by the operation method above.
 - To activate the quick comfort setting under cooling operation, change field setting [2-41]=2.
 This setting is used in conjunction with setting [2-8].
 - To activate the quick comfort setting under heating operation, change field setting [2-42]=2.
 This setting is used in conjunction with setting [2-9].

- Mild
 Overshoot (during heating operation) or undershoot (during cooling operation) is allowed compared to the requested refrigerant temperature, in order to achieve the required room temperature very fast. The overshoot is not allowed from the start up moment. The start up occurs under the condition which is defined by the operation mode above.
 In case of cooling operation the evaporating temperature is allowed to go down to 43°F (6°C) on temporary base depending on the situation.
 In case of heating operation the condense temperature is allowed to go up to 115°F (46°C) on temporary base depending on the situation.
 When the request from the indoor units becomes more moderate, the system will eventually go to the steady state condition which is defined by the operation method above.
 The start up condition is different from the powerful and quick comfort setting.
 - To activate the mild comfort setting under cooling operation, change field setting [2-41]=1.
 This setting is used in conjunction with setting [2-8].
 - To activate the mild comfort setting under heating operation, change field setting [2-42]=1.
 This setting is used in conjunction with setting [2-9].

- Eco
 The original refrigerant temperature target, which is defined by the operation method (see above) is kept without any correction, unless for protection control.
 - To activate the mild comfort setting under cooling operation, change field setting [2-41]=0.
 This setting is used in conjunction with setting [2-8].
 - To activate the mild comfort setting under heating operation, change field setting [2-42]=0.
 This setting is used in conjunction with setting [2-9].
Example: Automatic mode during cooling

A Actual load curve
B Virtual load curve (initial capacity automatic mode)
C Virtual target value (initial evaporation temperature value automatic mode)
D Required evaporation temperature value
E Load factor
F Outside air temperature
T_e Evaporating temperature
Quick
Powerful
Mild

Room temperature evolution:

A Indoor unit set temperature
B Operation start
C Operating time
D Mild
E Quick
F Powerful

Example: Automatic mode during cooling

A Virtual load curve (default automatic mode peak capacity)
B Load curve
C Virtual target value (initial condensation temperature value automatic mode)
D Design temperature
E Load factor
F Outside air temperature
T_c Condensing temperature
Quick
Powerful
Mild

Room temperature evolution:

A Indoor unit set temperature
B Operation start
C Operating time
D Mild
E Quick
F Powerful
No matter which control is selected, variations on the behavior of the system are still possible due to protection controls to keep the unit operating under reliable conditions. The intentional target, however, is fixed and will be used to obtain the best balance between energy consumption and comfort, depending on the application type.

12. CAUTION FOR REFRIGERANT LEAKS
(Points to note in connection with refrigerant leaks)

Introduction
The installer and system specialist shall secure safety against leakage according to local regulations or standards. The following standards may be applicable if local regulations are not available.

The VRV System, like other air conditioning systems, uses R410A as refrigerant. R410A itself is an entirely safe non-toxic, non-combustible refrigerant. Nevertheless care must be taken to ensure that air conditioning facilities are installed in a room which is sufficiently large. This assures that the maximum concentration level of refrigerant gas is not exceeded, in the unlikely event of major leak in the system and this in accordance to the local applicable regulations and standards.

Maximum concentration level
The maximum charge of refrigerant and the calculation of the maximum concentration of refrigerant is directly related to the humanly occupied space in to which it could leak.

The unit of measurement of the concentration is lb./ft\(^2\) (the weight in lb. of the refrigerant gas in 1 ft\(^2\) volume of the occupied space).

Compliance to the local applicable regulations and standards for the maximum allowable concentration level is required.

Pay a special attention to the place, such as a basement, etc. where refrigerant can stay, since refrigerant is heavier than air.

Procedure for checking maximum concentration
Check the maximum concentration level in accordance with steps 1 to 4 below and take whatever action is necessary to comply.

1. Calculate the amount of refrigerant (lb.) charged to each system separately.

\[
\text{amount of refrigerant in a single unit system (amount of refrigerant with which the system is charged before leaving the factory)} + \text{additional charging amount (amount of refrigerant added locally in accordance with the length or diameter of the refrigerant piping)} = \text{total amount of refrigerant (lb.) in the system}
\]

NOTE:
* Where a single refrigerant facility is divided into 2 entirely independent refrigerant systems then use the amount of refrigerant with which each separate system is charged.

2. Calculate the smallest room volume (ft\(^3\))

\[
\text{total volume of refrigerant in the refrigerant system} < \text{maximum concentration level (lb./ft}^2\text{)}
\]

If the result of the above calculation exceeds the maximum concentration level then make similar calculations for the second then third smallest room and so until the result falls short of the maximum concentration.

3. Calculating the refrigerant density using the results of the calculations in steps 1 and 2 above.

4. Dealing with the situations where the result exceeds the maximum concentration level.

Where the installation of a facility results in a concentration in excess of the maximum concentration level then it will be necessary to revise the system.

Please consult your Daikin supplier.